Advertisement

Journal of Materials Science

, Volume 28, Issue 7, pp 1799–1804 | Cite as

Nucleation behaviour of diamond particles on silicon substrates in a hot-filament chemical vapour deposition

  • Soon-Sup Park
  • Jai-Young Lee
Papers

Abstract

Diamond films and particles have been deposited on a silicon substrate using a hot-filament chemical vapour deposition (CVD) method in order to study the effect of hydrogen on the behaviour of diamond nucleation. The nucleation density of diamond was affected by both hydrogen treatment prior to deposition and filament temperature,Tf. The nucleation density was decreased markedly with increasing hydrogen-treatment time. The nucleation density also changed with increasingTf, which increased initially and then reached a maximum at 2100°C and decreased thereafter. Etching of the substrate surface was observed and enhanced with both increasing hydrogen-treatment time and increasingTf. The changes in nucleation behaviour were related closely to the etching of substrate surface. These results are explained in terms of the etching of nucleation sites.

Keywords

Hydrogen Polymer Silicon Chemical Vapour Deposition Vapour Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Angus andC. C. Hayman,Science 241 (1988) 913.CrossRefGoogle Scholar
  2. 2.
    K. E. Spear,J. Amer. Ceram. Soc. 72 (2) (1989) 171.CrossRefGoogle Scholar
  3. 3.
    S. Matsumoto, Y. Sato, M. Kamo andN. Setaka,Jpn J. Appl. Phys. 21 (1982) L183.CrossRefGoogle Scholar
  4. 4.
    S. Matsumoto,J. Mater. Sci. Lett. 4 (1985) 600.CrossRefGoogle Scholar
  5. 5.
    M. Kamo, Y. Sato, S. Matsumoto, andN. Setaka,J. Crystal Growth 62 (1983) 642.CrossRefGoogle Scholar
  6. 6.
    A. Sawabe andT. Inuzuka,Appl. Phys. Lett. 46 (1985) 146.CrossRefGoogle Scholar
  7. 7.
    D. W. Kweon andJ. Y. Lee,J. Appl. Phys. 68 (1990) 4272.CrossRefGoogle Scholar
  8. 8.
    Y. Saito, S. Matsuda andS. Nogita,J. Mater. Sci. Lett. 5 (1986) 565.CrossRefGoogle Scholar
  9. 9.
    S. S. Park andJ. Y. Lee,J. Appl. Phys. 69 (1991) 2618.CrossRefGoogle Scholar
  10. 10.
    F. G. Celii andJ. E. Butler,Appl. Phys. Lett. 54 (1989) 1031.CrossRefGoogle Scholar
  11. 11.
    C. H. Wu, M. A. Tamor, T. J. Potter andE. W. Kaiser,J. Appl. Phys. 68 (1990) 4825.CrossRefGoogle Scholar
  12. 12.
    H. Matsubara andT. Sakuma,J. Mater. Sci. 25 (1990) 4472.CrossRefGoogle Scholar
  13. 13.
    M. Kamo, H. Chawanya, T. Tanaka, Y. Sato andN. Setaka,Mater. Sci. Engng A105/106 (1988) 535.CrossRefGoogle Scholar
  14. 14.
    Y. Saito, K. Sato, S. Matuna andH. Koinuma,J. Mater. Sci. 26 (1991) 2441.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Soon-Sup Park
    • 1
  • Jai-Young Lee
    • 1
  1. 1.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyYusung Gu, TaejonKorea

Personalised recommendations