Advertisement

Journal of Materials Science

, Volume 28, Issue 7, pp 1781–1787 | Cite as

Dissolution of willemite polycrystals: effects of pH, temperature and TiO2 solid solution

  • H. Y. Chang
  • C. C. Lin
  • P. Shen
  • A. C. Su
  • C. C. Lee
Papers

Abstract

Dissolution (in terms of weight loss) experiments on willemite in the form of sintered polycrystals (TiO2-dissolved or TiO2-free) were conducted over a wide solution pH range (pH 1–13) at 25 and 50°C, respectively, or over the temperature range 25–90°C at pH 1. Dissolution follows a linear kinetics in acidic or basic solutions; the apparent activation energy of acid dissolution (pH 1) is 19 and 16 kJ mol−1, respectively, for the TiO2-free and the TiO2-dissolved willemite. The pH dependence of the dissolution behaviour resembles that of zinc oxide rather than silica. Willemite polycrystals dissolve via parabolic-like kinetics in the intermediate pH range, which may be attributed to the formation of a passive film or to the possible polishing effect. TiO2 solid solution facilitates acid but suppresses base dissolution of willemite, but grain boundary dissolution also contributes significantly in the basic region.

Keywords

Activation Energy Apparent Activation Energy Passive Film Basic Region Zinc Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Rawson, “Glass Science and Technology”, Vol. 3: “Properties and Applications of Glass” (Elsevier, Amsterdam, 1980).Google Scholar
  2. 2.
    R. W. Douglas andT. M. M. El-Shamy,J. Amer. Ceram. Soc. 50 (1967) 1.CrossRefGoogle Scholar
  3. 3.
    J. C. Lapp andJ. E. Shelby,ibid. 70 (1987) 271.CrossRefGoogle Scholar
  4. 4.
    M. Shimbo,ibid. 70 (1987) C101.CrossRefGoogle Scholar
  5. 5.
    R. J. Charles,J. Appl. Phys. 29 (1958) 1549.CrossRefGoogle Scholar
  6. 6.
    T. M. El-Shamy, J. Lewis andR. W. Douglas,Glass Technol. 13 (1972) 81.Google Scholar
  7. 7.
    R. H. Doremus, in “Glass Science” (Wiley, New York, 1973) p. 229.Google Scholar
  8. 8.
    P. W. McMillan, “Glass Ceramics”, 2nd Edn (Academic Press, London, 1979) p. 90.Google Scholar
  9. 9.
    R. A. Berner, in “Reviews in Mineralogy”, Vol. 8: “Kinetics of Geochemical Processes”, edited by A. C. Lasaga and R. J. Kirkpatrick (Mineralogical Society of America, Washington, DC, 1981) p. 111.Google Scholar
  10. 10.
    R. A. Berner andG. R. Holdren, Jr,Geochim. Cosmochim. Acta 43 (1979) 1173.CrossRefGoogle Scholar
  11. 11.
    R. A. Berner, E. L. Sjoberg, M. A. Velbel andM. D. Krom,Science 207 (1980) 1205.CrossRefGoogle Scholar
  12. 12.
    J. Schott, R. A. Berner andE. L. Sjoberg,Geochim. Cosmochim. Acta 45 (1981) 2123.CrossRefGoogle Scholar
  13. 13.
    J. Schott andR. A. Berner,ibid. 47 (1983) 2233.CrossRefGoogle Scholar
  14. 14.
    M. P. Tole, A. C. Lasaga, C. Pantano andW. B. White,ibid. 50 (1986) 379.CrossRefGoogle Scholar
  15. 15.
    M. P. Tole,ibid. 49 (1985) 453.CrossRefGoogle Scholar
  16. 16.
    A. C. Lasaga,J. Geophys. Res. 89 (B6) (1984) 4009.CrossRefGoogle Scholar
  17. 17.
    A. E. Blum andA. C. Lasaga,Nature 331 (1988) 431.CrossRefGoogle Scholar
  18. 18.
    W. M. Murphy andH. C. Helgeson,Geochim. Cosmochim. Acta 51 (1987) 3137.CrossRefGoogle Scholar
  19. 19.
    M. A. Simonov, P. A. Sandomirskii, Y. K. Egorov-Tismenko andN. V. Belov,Soviet Phys. Dokl. 22 (1977) 622.Google Scholar
  20. 20.
    J. A. Speer andP. H. Ribbe, in “Reviews in Mineralogy”, Vol. 5: “Orthosilicates”, 2nd Edn, edited by P. H. Ribbe (Mineralogical Society of America, Washington, DC, 1982) p. 429.Google Scholar
  21. 21.
    F. H. Norton,J. Amer. Ceram. Soc. 20 (1937) 217.CrossRefGoogle Scholar
  22. 22.
    P. W. McMillan,Phys. Chern. Glasses,10 (1969) 153.Google Scholar
  23. 23.
    C. C. Lee, P. Shen andH. Y. Lu,J. Mater. Sci. 24 (1989) 3300.CrossRefGoogle Scholar
  24. 24.
    C. C. Lin andP. Shen,Geochim. Cosmochim. Acta in press.Google Scholar
  25. 25.
    P. V. Brady andJ. V. Walther,Geochim. Cosmochim. Acta 53 (1989) 2823.CrossRefGoogle Scholar
  26. 26.
    G. A. Parks,Chem. Rev. 65 (1965) 177.CrossRefGoogle Scholar
  27. 27.
    M. Poubaix, in “Atlas of Electrochemical Equilibria in Aqueous Solutions” (National Association of Corrosion Engineers, Houston, Texas, 1974) p. 410.Google Scholar
  28. 28.
    K. Knauss andT. Wolery,Geochim. Cosmochim. Acta 52 (1988) 43.CrossRefGoogle Scholar
  29. 29.
    W. Stumm andJ. J. Morgan, in “Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters” (Wiley-Interscience, New York, 1981) p. 632.Google Scholar
  30. 30.
    R. J. Brodd andV. E. Leger, in “Encyclopedia of Electrochemistry of the Elements”, Vol. 5, edited by A. J. Bard (Marcel Dekker, New York, 1976) p. 1.Google Scholar
  31. 31.
    A. C. Lasaga, in “Kinetics of Geochemical Processes”, edited by A. C. Lasaga and R. J. Kirkpatrick (Mineralogical Society of America, Washington, DC, 1981) p. 1.CrossRefGoogle Scholar
  32. 32.
    R. Grauer andW. Stumm,Colloid Polym. Sci. 260 (1982) 959.CrossRefGoogle Scholar
  33. 33.
    R. C. Weast andD. R. Lide (editors), in “Handbook of Chemistry and Physics” (CRC Press, Boca Raton, Florida, 1989) p. B-208.Google Scholar
  34. 34.
    J. Inczedy, in “Analytical Applications of Complex Equilibria” (Ellis Horwood, Chichester, 1976) p. 317.Google Scholar
  35. 35.
    E. Wieland, B. Wehrli andW. Stumm,Geochim. Cosmochim. Acta 52 (1988) 1969.CrossRefGoogle Scholar
  36. 36.
    R. D. Shannon,Acta Crystallog A32 (1976) 751.CrossRefGoogle Scholar
  37. 37.
    G. R. Holdren, Jr andP. M. Speyer,Geochim. Coschim. Acta 49 (1985) 675.CrossRefGoogle Scholar
  38. 38.
    Idem, ibid. 51 (1987) 2311.CrossRefGoogle Scholar
  39. 39.
    R. Sprycha, Colloids Surf.5 (1982) 147.CrossRefGoogle Scholar
  40. 40.
    P. Tarte,Nature 191 (1961) 1002.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • H. Y. Chang
    • 1
  • C. C. Lin
    • 1
  • P. Shen
    • 1
  • A. C. Su
    • 1
  • C. C. Lee
    • 2
  1. 1.Institute of Materials Science and EngineeringNational Sun Yat-Sen UniversityKaohsiungTaiwan
  2. 2.Department of Materials and Mineral Resources EngineeringNational Taipei Institute of TechnologyTaiwan

Personalised recommendations