Journal of Materials Science

, Volume 28, Issue 7, pp 1705–1724 | Cite as

Phase diagram study of the formation and crystallization of Ge-metal amorphous alloy films

  • Zhang Renji
  • Li Li
  • Wu Ziqin


The Ge-Au and Ge-Ag alloy films were deposited in vacuum at room temperature and then systematically observed in the TEM. The maximum metallic concentrations in the alloy films,Cmax, which form the stable amorphous alloy phases of germanium with gold and silver, were obtained. The annealed crystallization temperatureTc, which falls with increasing metallic content in these films was also found. The structures of these films and their annealed specimens were also studied. There are various factors which influence the formation of amorphous alloy films deposited in vacuum for Ge-metal systems. A new formula forCmax has been derived. The annealed crystallization character has been explained by means of the variation of the free energy and the activation energy of crystallization. The activation energy of crystallization,Ea, can be obtained from the data values ofTc. For Ge-Au films,Ea (Au)=E a o /(−18.66C Au 2 +16.83CAu+1)±3.3 (kcal mol−1); for Ge-Ag films,Ea (Ag)=E a o /(−2.754C Ag 2 +3.815CAg+ 1)±2.6 (kcal mol−1). In order to explain all these results, two kinds of phase diagram for the alloy films have been introduced. One is the three-dimensional relationship diagrams of phase formation in semiconductor-metallic alloy films; it was introduced to explain the influencing factors. The other is the three-dimensional phase diagrams of annealed semiconductor-metallic films systems. From this diagram all the phase transitions can be found.


Activation Energy Phase Diagram Germanium Amorphous Alloy Alloy Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Buckel,J. Vac. Sci. Technol. 10 (1973) 599.CrossRefGoogle Scholar
  2. 2.
    Ph. Mangin, G. Marchal, C. Mourey andChr. Janot,Phys. Rev. B2 (1980) 3047.CrossRefGoogle Scholar
  3. 3.
    Suicu Lo, Dachen Qing andZiqin Wu,Phys. Sinica 31 (1982) 1401 (in Chinese).Google Scholar
  4. 4.
    A. Gheorghin, K. Dricc-Khodja, S. Fisson, M. L. Theye andJ. Dixmier,J. Phys. Colloq. 46 (1985) C8, 545.Google Scholar
  5. 5.
    A. C. Zettlemoyer, in “Proceedings of the Conference on Ohmic Contact to Semiconductors”, Montreal, Canada (1968) p. 48.Google Scholar
  6. 6.
    K. L. Chopra, P. Nath andA. C. Rastogi,Phys. Status Solidi A27 (1975) 645.CrossRefGoogle Scholar
  7. 7.
    K. L. Chopra andP. Nath,ibid. A33 (1976) 333.CrossRefGoogle Scholar
  8. 8.
    K. L. Chopra, H. S. Randhawa andL. K. Malhotra,Thin Solid Films 47 (1977) 203.CrossRefGoogle Scholar
  9. 9.
    P. Nath, V. Dutta andK. L. Chopra,ibid. 64 (1979) 65.CrossRefGoogle Scholar
  10. 10.
    P. Nath andK. L. Chopra,ibid. 58 (1979) 339.CrossRefGoogle Scholar
  11. 11.
    P. Nath, V. Dutta andK. L. Chopra,J. Phys. C. (GB) 12 (1979) L203.CrossRefGoogle Scholar
  12. 12.
    Idem, Phys. Status Solidi A34 (1976) 405.CrossRefGoogle Scholar
  13. 13.
    V. Dutta, P. Nath, V. D. Vankar andK. L. Chopra,ibid. A49 (1978) 379.CrossRefGoogle Scholar
  14. 14.
    H. S. Randhawa, L. K. Malhotra andK. L. Chopra,J. Appl. Phys. 49 (1978) 4294.CrossRefGoogle Scholar
  15. 15.
    H. S. Randhawa, P. Nath, L. K. Malhotra andK. L. Chopra,Sol. Stat. Commun. 21 (1976) 73.CrossRefGoogle Scholar
  16. 16.
    Idem, J. Non-Cryst. Solids 29 (1978) 311.CrossRefGoogle Scholar
  17. 17.
    Idem, Phys. Status Solidi A37 (1976) 313.CrossRefGoogle Scholar
  18. 18.
    N. G. Nakhodkin, A. I. Novosel'skaya andA. F. Bardamid,Sov. Phys.-Semicond. 19 (1985) 1182.Google Scholar
  19. 19.
    Y. Saito,J. Phys. Soc. Jpn 53 (1984) 4230.CrossRefGoogle Scholar
  20. 20.
    T. B. Light andC. N. J. Wagner,J. Appl. Crystallogr. 1 (1968) 199.CrossRefGoogle Scholar
  21. 21.
    J. S. Johannessen, in “Proceedings of the 4th Nordic Solid State Conference”, Turku, Finland (1970) p. 53.Google Scholar
  22. 22.
    S. Shimaoka andS. C. C. Chang,J. Vac. Sci. Technol. 8 (1971) 243.CrossRefGoogle Scholar
  23. 23.
    Idem, in “Proceedings of the 28th Electron Microscopy Society of America”, Houston, USA (1970) p. 512.Google Scholar
  24. 24.
    M. L. Theye,Mater. Res. Bull. 6 (1971) 103.CrossRefGoogle Scholar
  25. 25.
    Renji Zhang, Shengling Chu andZiqin Wu,Phys. Sinica 35 (1986) 365 (in Chinese).Google Scholar
  26. 26.
    Idem, Chinese Phys. Lett. 2 (1985) 211.Google Scholar
  27. 27.
    B. Predel andD. W. Stein,Z. Naturforsch. A26 (1971) 722.Google Scholar
  28. 28.
    A. Barna, P. B. Barna andJ. F. Pocza,J. Non-Cryst. Solids 8–10 (1972) 36.CrossRefGoogle Scholar
  29. 29.
    N. G. Nakhodkin, A. F. Bardamid, A. I. Novosel' Skaya andK. I. Yakimov,Sov. Phys. Solid State 29 (1987) 410.Google Scholar
  30. 30.
    F. Yogawa andY. Fujiki,J. Appl. Phys. Jpn 8 (1969) 1056.CrossRefGoogle Scholar
  31. 31.
    P. Germain, K. Zellama, S. Squelard, J. C. Bourgoin andA. Gheoghin,J. Appl. Phys. 50 (1979) 6986.CrossRefGoogle Scholar
  32. 32.
    A. G. Fitzgerald,J. Mater. Sci. Lett. 1 (1982) 145.CrossRefGoogle Scholar
  33. 33.
    Renji Zhang, Yuping Wang andZiqin Wu,J. Chinese Elect. Micros. Soc. 3(4) (1984) 69.Google Scholar
  34. 34.
    Idem, in “Proceedings of the Beijing Conference and Exhibition of Instrumental Analysis” ed. C. C. Gus Vol. 1 (1985) p. 83.Google Scholar
  35. 35.
    G. W. Rackhom andJ. W. Steeds,Inst. Phys. Conf. Ser. 41C (1978) 178.Google Scholar
  36. 36.
    K. Tamura, J. Fukushima, H. Endo, K. Kishi, S. Ikeda andS. Minomura,J. Phys. Soc. Jpn 36 (1978) 565.CrossRefGoogle Scholar
  37. 37.
    G. Schluckebier andB. Predel,Z Metallkde 71 (1980) 535.Google Scholar
  38. 38.
    M. K. Gardiner, D. Colbourne andC. Norris,Philos. Mag. B54 (1986) 133.CrossRefGoogle Scholar
  39. 39.
    H. Neumann, W. Oyer, A. G. Iliuskii, T. M. Khristenko, L. E. Mikhailova, A. V. Romanova, T. Scholz andM. Wobst,Wiss. Z. Tech. Univ. Karl-Marx-Stadt 29 (1987) 306.Google Scholar
  40. 40.
    D. Turnbull,Contemp. Phys. 10 (1969) 473.CrossRefGoogle Scholar
  41. 41.
    D. Turnbull andP. E. Polk,J. Non-Cryst. Solids 8–10 (1972) 19.CrossRefGoogle Scholar
  42. 42.
    H. S. Chen andD. Turnbull,Acta Metall. 17 (1969) 1021.CrossRefGoogle Scholar
  43. 43.
    Idem, Contemp. Phys. 10 (1969) 473.CrossRefGoogle Scholar
  44. 44.
    C. Ortiz, K. A. Rubin andS. Ajuria,J. Mater. Res. 3 (1988) 1196.CrossRefGoogle Scholar
  45. 45.
    Y. Q. Gao andW. Wang,J. Non-Cryst. Solids 81 (1986) 129.CrossRefGoogle Scholar
  46. 46.
    E. Pocza,J. Vac. Sci. Technol. 6 (1969) 472.CrossRefGoogle Scholar
  47. 47.
    I. Gutzow andI. Avramov,J. Non-Cryst. Solids 16 (1974) 128.CrossRefGoogle Scholar
  48. 48.
    Idem, Thin Solid Films 85 (1981) 203.CrossRefGoogle Scholar
  49. 49.
    I. Avramov andI. Gutzow,ibid. 185 (1990) 91.CrossRefGoogle Scholar
  50. 50.
    Renji Zhang, Li Li andZiqin Wu,ibid. 208 (1992) 295.CrossRefGoogle Scholar
  51. 51.
    K. Kim andD. D. L. Chang, “Thin Films-Interfaces and Phenomena”, Fall Meeting, Boston, USA (1985) p. 437.Google Scholar
  52. 52.
    S. R. Herd, P. Chaudhari andM. H. Brodsky,J. Non-Cryst. Solids 7 (1972) 309.CrossRefGoogle Scholar
  53. 53.
    M. Hafiz, E. Mgbenu, P. A. Tove, H. Norde andS. Petersson,Vacuum (GB) 11 (1977) 193.CrossRefGoogle Scholar
  54. 54.
    G. Y. Robinson,Thin Solid Films 72 (1980) 129.CrossRefGoogle Scholar
  55. 55.
    V. M. Denisov, V. V. Beletskii andP. M. Shurygin,Inorg. Mater. 23 (1987) 298.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Zhang Renji
    • 1
  • Li Li
    • 2
  • Wu Ziqin
    • 3
  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Department of PhysicsLanzhou UniversityLanzhouPeople’s Republic of China
  3. 3.Centre of Fundamental PhysicsUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations