Journal of Materials Science

, Volume 26, Issue 4, pp 1069–1072 | Cite as

Eu2+ luminescence in alkali sulphate lattices

  • V. S. Kishan Kumar
  • B. S. V. S. R. Acharyulu
  • S. B. S. Sastry


Results of optical absorption and fluorescence studies on europium-doped sulphates of caesium, rubidium and potassium are reported. The optical absorption spectra showed a band in the 5.2 to 5.3 eV region in each of the three phosphors. Additional weak shoulders in the lower energy region were also observed. These absorption bands are attributed to the 4f7 → 4f6 5d transitions of europium which has entered the lattices predominantly in its divalent state. Fluorescence measurements also showed the host-dependent emission of Eu2+ in the 2.73 to 3.14 eV region with corresponding excitation spectra peaking in the 3.68 to 3.86 eV region. All these emission and excitation bands are assigned to Eu2+ ions due to transitions between the levels of 4f7 configuration and the excited mixed configuration of 4f65d. The presence of trivalent europium could not be detected by luminescence studies in any of the three sulphate lattices.


Europium Optical Absorption Excitation Spectrum Energy Region Fluorescence Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Hayes andJ. W. Twidell,J. Chem. Phys. 35 (1961) 1521.CrossRefGoogle Scholar
  2. 2.
    D. S. McClure andZ. Kiss,ibid. 39 (1963) 3251.CrossRefGoogle Scholar
  3. 3.
    A. A. Kaplyanskii andP. P. Feofilov.Opt. Spect. 13 (1962) 129.Google Scholar
  4. 4.
    G. Blasse,J. Chem. Phys. 45 (1966) 2356.CrossRefGoogle Scholar
  5. 5.
    J. W. Haynes andJ. J. Brown,J. Elec. Chem. Soc. 115 (1968) 1060.CrossRefGoogle Scholar
  6. 6.
    G. Blasse andA. Bril,J. Chem. Phys. 46 (1967) 2579.CrossRefGoogle Scholar
  7. 7.
    C. W. Struck andW. H. Fonger,J. Lumin. 1–2 (1970) 456.CrossRefGoogle Scholar
  8. 8.
    V. N. Bapat,J. Phys. C 10 (1977) L465.CrossRefGoogle Scholar
  9. 9.
    V. S. Kishan Kumar, S. B. S. Sastry andB. S. V. S. R. Acharyulu,Phys. Status Solidi (b) 155 (1989) 679.CrossRefGoogle Scholar
  10. 10.
    J. D. Kingsley andJ. S. Prener,Phys. Rev. 126 (1962) 458.CrossRefGoogle Scholar
  11. 11.
    H. E. Hoefdraad,J. Solid State Chem. 15 (1975) 175.CrossRefGoogle Scholar
  12. 12.
    J. P. Jouart, C. Bissieux, M. Egee, G. Mary andM. deMurica,J. Phys. C 14 (1981) 4923.CrossRefGoogle Scholar
  13. 13.
    M. Sekita,J. Lumin. 22 (1981) 335.CrossRefGoogle Scholar
  14. 14.
    S. Freed andS. Katcoff,Physica 14 (1948) 17.CrossRefGoogle Scholar
  15. 15.
    K. Takahashi, K. Kohda andJ. Miyahara,J. Lumin. 31–32 (1984) 266.CrossRefGoogle Scholar
  16. 16.
    V. V. Bryukvin andE. E. Penzina,Opt. Spect. 52 (1982) 646.Google Scholar
  17. 17.
    S. B. S. Sastry andS. Sapru,J. Lumin. 23 (1982) 281.CrossRefGoogle Scholar
  18. 18.
    M. V. Eremin,Opt. Spect. 26 (1968) 317.Google Scholar
  19. 19.
    A. M. Gurvich, V. B. Gutan, M. A. Llina, V. P. Kavtorova, R. V. Katomina, M. G. Myagikova andT. I. Savikhina,ibid. 52 (1982) 175.Google Scholar
  20. 20.
    F. M. Tayn, W. Lehmann, D. M. Feldman andJ. Murphy,J. Electro, chem. Soc. 121 (1974) 1475.CrossRefGoogle Scholar
  21. 21.
    K. S. V. Nambi, V. N. Bapat andS. M. D. Rao,J. Phys. C 12 (1979) L745.CrossRefGoogle Scholar
  22. 22.
    F. D. S. Butement,Trans. Faraday Soc. 44 (1948) 617.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • V. S. Kishan Kumar
    • 1
  • B. S. V. S. R. Acharyulu
    • 1
  • S. B. S. Sastry
    • 1
  1. 1.Department of PhysicsIndian Institute of TechnologyMadrasIndia

Personalised recommendations