Advertisement

Journal of Materials Science

, Volume 26, Issue 4, pp 1009–1014 | Cite as

Preparation and thermal decomposition of new pyrochlore Pb2FeWO6.5

  • Chung -Hsin Lu
  • Kazuo Shinozaki
  • Masanori Kato
  • Nobuyasu Mizutani
Papers

Abstract

A new compound Pb2FeWO6.5 having a pyrochlore structure has been synthesized by soaking the powder prepared from coprecipitation at 650 °C for 30 d. Using a conventional solid-state reaction, single-phase Pb2FeWO6.5, however, cannot easily be obtained. The coprecipitation technique not only contributes to the completion of reactions, but also lowers the formation temperatures. Enhanced homogeneity and reactivity in coprecipitated powder are considered to accelerate the progress of the reactions. Pb2FeWO6.5 is determined to be characteristic of a cubic pyrochlore structure having a lattice parameterao = 1.0432 nm. This compound exists stably below 700 °C, above which it decomposes to PbFe2/3W1/3O3 and PbWO4. A drastic change in microstructure is induced after complete decomposition at 860 °C.

Keywords

Polymer Microstructure Thermal Decomposition Drastic Change Formation Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Agranovskaya,Bull. Acad. Sci. USSR Phys. Ser. 24 (1960) 1271.Google Scholar
  2. 2.
    Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru andM. Koizumi,J. Amer. Ceram. Soc. 52 (1969) 516.CrossRefGoogle Scholar
  3. 3.
    M. Lejeune andJ. P. Boilot,Ceram. Int. 8 (1982) 99.CrossRefGoogle Scholar
  4. 4.
    T. R. Shrout andS. L. Swartz,Mater. Res. Bull. 18 (1983) 663.CrossRefGoogle Scholar
  5. 5.
    S. L. Swartz, T. R. Shrout, W. A. Schulze andL. E. Cross,J. Amer. Ceram. Soc. 67 (1984) 311.CrossRefGoogle Scholar
  6. 6.
    J. P. Guha andH. U. Anderson,ibid. 69 (1986) C287.Google Scholar
  7. 7.
    M. Yonezawa andT. Ohno, “The Japan-US Study Seminar on Dielectric and Piezoelectric Ceramics” (Tokyo, Japan, 1982) T-8 1.Google Scholar
  8. 8.
    M. P. Kassarjian, R. E. Newnham andJ. V. Biggers,Amer. Ceram. Soc. Bull. 64 (1985) 1108.Google Scholar
  9. 9.
    C. H. Lu, N. Ishizawa, K. Shinozaki, N. Mizutani andM. Kato,J. Mater. Sci. Lett. 7 (1988) 1078.CrossRefGoogle Scholar
  10. 10.
    C. H. Lu, K. Shinozaki, N. Mizutani andM. Kato,Seramikkusu Ronbunshi 97 (1989) 119 (translation:J. Ceram. Soc. Jpn Int. Edn 97 (1989) 115.)CrossRefGoogle Scholar
  11. 11.
    C. Cascales andI. Rasines,Z. Anorg. Allg. Chem. 529 (1985) 229.CrossRefGoogle Scholar
  12. 12.
    C. Cascales, I. Rasines, P. G. Casado andJ. Vega,Mater. Res. Bull. 20 (1985) 1359.CrossRefGoogle Scholar
  13. 13.
    C. Cascales, J. A. Alonso andI. Rasines,J. Mater. Sci. Lett. 5 (1986) 675.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • Chung -Hsin Lu
    • 1
  • Kazuo Shinozaki
    • 1
  • Masanori Kato
    • 1
  • Nobuyasu Mizutani
    • 1
  1. 1.Department of Inorganic Materials, Faculty of EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations