Journal of Materials Science

, Volume 26, Issue 4, pp 940–950 | Cite as

The presence and consequences of precipitatefree zones in an aluminium-copper-lithium alloy

  • T. S. Srivatsan
  • E. J. Lavernia


The addition of lithium to aluminium alloys has the potential for providing a class of high-strength alloys with exceptional properties suitable for aerospace applications. Potential candidates are precipitation hardenable and belong to the Al-Li-Cu family. The intrinsic microstructural features have a pronounced influence on the mechanical response of these alloys. In this work, the mechanisms responsible for the formation of precipitate-free zones along grain boundaries in precipitation-strengthened lithium-containing aluminium alloys were examined. The influence of grain morphology and the nature and type of precipitate coverage at the grain boundary in controlling the formation of these zones was analysed. The presence and influence of these zones along the grain boundaries on mechanical properties was studied for an Al-4.5Cu-1.21 Li alloy. It was found that while strength is comparable with existing high-strength alloys, the ductility decreases due to the presence of precipitate-free zones. The degradation in ductility is attributed to the particular mode of plastic deformation of this alloy, and to the restriction of plastic deformation in narrow planar zones along the grain boundaries. Fracture occurs when a critical local strain is reached in these zones. The overall consequences of precipitate-free zones along grain boundaries on mechanical properties are discussed in the light of competing effects involving the nature of matrix-strengthening precipitates, grain-boundary particles and deformation characteristics.


Lithium Plastic Deformation Ductility Aluminium Alloy Deformation Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. H. Geisler,Trans. AIME 180 (1949) 230.Google Scholar
  2. 2.
    Idem, “Phase Transformation in Solids” (Wiley, New York, 1951) p. 387.Google Scholar
  3. 3.
    G. Thomas andJ. Nutting,J. Inst. Metals 88 (1959–60) 81.Google Scholar
  4. 4.
    J. L. Taylor,ibid. 92 (1963–64) 301.Google Scholar
  5. 5.
    J. D. Embury andR. B. Nicholson,Acta Metall 13 (1965) 403.CrossRefGoogle Scholar
  6. 6.
    A. Kelly andR. B. Nicholson, “Progress in Materials Science”, Vol. 10, edited by Bruce Chalmers. (Pergamon Press, New York, 1963).Google Scholar
  7. 7.
    G. W. Lorimer andR. B. Nicholson, “The Mechanisms of Phase Transformation in Crystalline Solids” (The Institute of Metals, London, 1969) p. 36.Google Scholar
  8. 8.
    Idem, Acta Metall. 14 (1966) 1009.CrossRefGoogle Scholar
  9. 9.
    P. N. T. Unwin, G. W. Lorimer andR. B. Nicholson,ibid. 17 (1969) 1363.CrossRefGoogle Scholar
  10. 10.
    W. F. Smith andN. J. Grant,Trans. ASM 92 (1969) 44.Google Scholar
  11. 11.
    T. H. Sanders Jr, Final Report for the Naval Air Development Center, NADC Contract no. N62269-76-0271, June 1979.Google Scholar
  12. 12.
    A. J. Cornish andM. K. B. Day,J. Inst. Metals 97 (1969) 44.Google Scholar
  13. 13.
    P. N. T. Unwin andR. B. Nicholson,Acta Metall. 17 (1969) 1379.CrossRefGoogle Scholar
  14. 14.
    N. Ryum,ibid. 17 (1969) 921.Google Scholar
  15. 15.
    A. K. Vasudevan andR. D. Doherty,ibid. 35 (1987) 1193.CrossRefGoogle Scholar
  16. 16.
    E. A. Starke Jr,J. Metals 54 (1970) pp. 1–10.Google Scholar
  17. 17.
    D. W. Pashley, M. H. Jacobs andJ. T. Vietz,Philos. Mag. 16 (1967) 51.CrossRefGoogle Scholar
  18. 18.
    R. B. Nicholson,J. Inst. Metals 95 (1967) 91.Google Scholar
  19. 19.
    P. E. Doherty andR. S. Davis,Acta Metall. 7 (1959) 118.CrossRefGoogle Scholar
  20. 20.
    G. A. Chadwick,Philos. Mag. 14 (1966) 1295.CrossRefGoogle Scholar
  21. 21.
    P. N. T. Unwin, G. W. Lorimer andR. B. Nicholson,Acta Metall. 17 (1969) 1363.CrossRefGoogle Scholar
  22. 22.
    J. M. Silcock,J. Inst. Metals 88 (1959–60) 357.Google Scholar
  23. 23.
    B. Noble andG. E. Thompson,Met. Sci. J. 5 (1971) 114.CrossRefGoogle Scholar
  24. 24.
    D. B. Williams andJ. W. Edington,ibid. 9 (1975) 529.CrossRefGoogle Scholar
  25. 25.
    B. P. Gu, J. H. Kulwicki, G. L. Liedl andT. H. Sanders Jr,Mater. Sci. Engng 70 (1985) 217.CrossRefGoogle Scholar
  26. 26.
    S. C. Jha, T. H. Sanders Jr andM. A. Dayananda,Acta Metall. 35 (1987) 473.CrossRefGoogle Scholar
  27. 27.
    T. H. Sanders Jr, E. A. Ludwiczak andR. R. Sawtell,Mater. Sci. Engng 43 (1980) 247.CrossRefGoogle Scholar
  28. 28.
    O. Jensrud andN. Ryum,ibid. 64 (1984) 229.CrossRefGoogle Scholar
  29. 29.
    S. Kang andN. J. Grant, in “Aluminium-Lithium Alloys II”, edited by T. H. Sanders Jr and E. A. Starke Jr (The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1985) pp. 469–483.Google Scholar
  30. 30.
    S. Kang andN. J. Grant,Metall. Trans. 18A (1987) 2037.CrossRefGoogle Scholar
  31. 31.
    A. Gysler, R. E. Crooks andE. A. Starke Jr, in “Aluminium-Lithium Alloys”, edited by T. H. Sanders Jr and E. A. Starke Jr (Metallurgical Society of AIME, Warrendale, Pennsylvania, 1981) p. 263.Google Scholar
  32. 32.
    E. J. Coyne Jr, T. H. Sanders Jr andE. A. Starke Jr, “, p. 293.Google Scholar
  33. 33.
    J. G. Rinker, M. Marek andT. H. Sanders Jr,Mater. Sci. Engng 64 (1984) 203.CrossRefGoogle Scholar
  34. 34.
    T. S. Srivatsan, Doctor of Philosophy Thesis, Georgia Institute of Technology (1984).Google Scholar
  35. 35.
    E. A. Starke Jr andF. S. Lin,Metall. Trans. 13A (1982) 2259.CrossRefGoogle Scholar
  36. 36.
    J. M. Silcock, T. J. Heal andH. K. Hardy,J. Inst. Metals 84 (1955–56) 23.Google Scholar
  37. 37.
    J. D. Boyd andR. B. Nicholson,Acta Metall. 19 (1971) 1379.CrossRefGoogle Scholar
  38. 38.
    J. P. Lyle andW. S. Cebulak,Metall. Trans. 6A (1975) 685.CrossRefGoogle Scholar
  39. 39.
    J. R. Pickens,J. Mater. Sci. 16 (1981) 1437.CrossRefGoogle Scholar
  40. 40.
    M. J. Cooper, M. Nauer, R. Bauman, R. F. Singer, in Proceedings of the 1987 Conference on “Powder Metallurgy Aerospace Materials”, Lucerne, Switzerland, November 1987.Google Scholar
  41. 41.
    R. Lalauze, I. Guillemin andC. Pijolat,J. Thermal Analy. 31 (1986) 1109.CrossRefGoogle Scholar
  42. 42.
    S. Fox, H. M. Flower andD. S. McDarmaid, in “Aluminium-Lithium III”, Proceedings of the Third International Conference, edited by C. Baker, S. J. Harris, P. J. Gregson and C. J. Peel (The Institute of Metals, London, 1986) p. 263.Google Scholar
  43. 43.
    M. Ahmad,Metall Trans. 18A (1987) 681.CrossRefGoogle Scholar
  44. 44.
    F. R. Billman, J. C. Kuli Jr, G. J. Hildeman, J. E. Petit andJ. A. Walker, “Proceedings of the Third International Conference on Rapid Solidification”, (National Bureau of Standards, Gaithersburg, Maryland, 1982) p. 532.Google Scholar
  45. 45.
    W. L. Otto Jr, “Metallurgical Factors Controlling Structure in High Strength Aluminum Products”, Air Force Materials Laboratory, AFML-TR-76-60, May 1976.Google Scholar
  46. 46.
    E. J. Lavernia andN. J. Grant,Mater. Sci. Engng 98 (1988) 381.CrossRefGoogle Scholar
  47. 47.
    Y. W. Kim, “Progress in Powder Metallurgy”, Vol. 54, Proceedings of the 1987 Powder Metallurgy Exhibition (Metal Powder Industries Federation and the American Powder Metallurgy Institute, Princeton, New Jersey, 1987) p. 13.Google Scholar
  48. 48.
    E. Hornbogen andM. Graf,Acta Metall 25 (1977) 877.CrossRefGoogle Scholar
  49. 49.
    J. D. Embury andE. Ness,Z. Metallkde. 65 (1974) 45.Google Scholar
  50. 50.
    N. Ryum,Acta Metall. 16 (1968) 327.CrossRefGoogle Scholar
  51. 51.
    Idem, ibid. 17 (1969) 921.Google Scholar
  52. 52.
    P. T. Unwin andG. C. Smith,J. Inst. Metals 97 (1969) 300.Google Scholar
  53. 53.
    N. F. Mott,Proc. R. Soc. 200A (1953) 1.Google Scholar
  54. 54.
    A. H. Stroh,ibid. 223A (1954) 404.Google Scholar
  55. 55.
    Idem, ibid. 232A (1955) 550.Google Scholar
  56. 56.
    A. K. Vasudevan, E. A. Ludwiczak, S. F. Baumann andR. D. Doherty,Mater. Sci. Engng 72 (1985) L25.CrossRefGoogle Scholar
  57. 57.
    R. Becker, A. Needleman, S. Suresh, V. Tvergaard andA. K. Vasudevan,Acta Metall. 37 (1989) 99.CrossRefGoogle Scholar
  58. 58.
    J. E. Hatch, “Aluminium”.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • T. S. Srivatsan
    • 1
  • E. J. Lavernia
    • 2
  1. 1.Department of Mechanical EngineeringThe University of AkronAkronUSA
  2. 2.Division of Materials, Department of Mechanical EngineeringUniversity of CaliforniaIrvineUSA

Personalised recommendations