Advertisement

Journal of Materials Science

, Volume 26, Issue 4, pp 925–939 | Cite as

The frictional behaviour of LiF single crystals

  • E. A. Schlanger
  • C. Y. Huang
  • N. H. Macmillan
Papers
  • 43 Downloads

Abstract

A study has been made of the influence of initial surface roughness, renewable and non-renewable surface contaminants, and irradiation hardening on the coefficient of friction for one LiF single crystal (A) sliding on another (B) in {100}A<010>A∥{100}B 〈010〉B orientation at ∼ 295 K. The normal load was ∼ 1 N, the nominal contact pressure ∼ 0.1 MPa, the sliding velocity 0.2 to 0.6 mm sec−1, and the amplitude of the (reciprocate) motion a few millimetres. Any influence of non-renewable contaminants persisted only for cumulative relative displacements ≲ 0.1 m, and that of micrometre-scale initial surface roughness only for a few metres. At steady state in the presence of renewable contaminants the coefficient of friction varied only from a high of ∼ 0.45 in ultra-high vacuum (∼ 7.5 × 10−8 Pa) and “dry” nitrogen-rich air (∼ 105 Pa, relative humidity ≲ 15%) to a low of ∼ 0.38 in “moist” nitrogen-rich air (∼ 105 Pa, relative humidity ∼ 50%). Irradiation hardening had no effect on the coefficient of friction at steady state. The worn surfaces created by steady-state sliding always exhibited a grooved topography partly obscured by more-or-less adherent layers of variously consolidated equiaxed debris particles ∼ 100 nm in size. Owing to the action of image forces, these particles contained no dislocations. It is suggested that the coefficient of friction was determined at steady state by the stress needed to shear these tiny particles past one another as near-rigid bodies.

Keywords

Polymer Steady State Relative Humidity Surface Roughness Contact Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. P. Bowden andD. Tabor, “The Friction and Lubrication of Solids”, Vols I and II (Oxford University Press, Oxford, 1954 and 1964).Google Scholar
  2. 2.
    E. MacGurdy, “The Notebooks of Leonardo da Vinci” (Cape, London, 1956).Google Scholar
  3. 3.
    G. Amontons,Mém. Acad. Roy. A (1699) 275.Google Scholar
  4. 4.
    C. A. Coulomb,Mém. Math. Phys. Acad. Roy. (1785) 161.Google Scholar
  5. 5.
    J. Leslie, “An Experimental Enquiry Into the Nature and Propagation of Heat” (Mawman, London, 1804).Google Scholar
  6. 6.
    M. T. Sprackling, “The Plastic Deformation of Simple Ionic Crystals” (Academic Press, London, 1976) p. 71.Google Scholar
  7. 7.
    A. Kelly andN. H. Macmillan, “Strong Solids”, 3rd Edn (Oxford University Press, Oxford, 1986) pp. 116, 143.Google Scholar
  8. 8.
    K. L. Kliewer andJ. S. Koehler,Phys. Rev. 140 (1965) A1226.CrossRefGoogle Scholar
  9. 9.
    Idem, ibid. 140 (1965) A1241.CrossRefGoogle Scholar
  10. 10.
    R. M. Latanision andJ. T. Fourie (eds), “Surface Effects in Crystal Plasticity” (Noordhoff, Leyden, The Netherlands, 1977).Google Scholar
  11. 11.
    R. M. Latanision andJ. R. Pickens (eds), “Atomistics of Fracture” (Plenum Press, New York, 1983).Google Scholar
  12. 12.
    R. M. Latanision andR. H. Jones (eds), “Chemistry and Physics of Fracture” (Nijhoff, Dordrecht, The Netherlands, 1987).Google Scholar
  13. 13.
    J. H. Westbrook andP. J. Jorgensen,Trans. Met. Soc. AIME 233 (1965) 425.Google Scholar
  14. 14.
    R. E. Hanneman andJ. H. Westbrook,Phil. Mag. 18 (1968) 73.CrossRefGoogle Scholar
  15. 15.
    D. H. Buckley, “Influence of Surface Active Agents on Friction, Deformation and Fracture of Lithium Fluoride”, Report NASA TN D-4716 (NASA, Washington, D.C., 1968).Google Scholar
  16. 16.
    Ye. D. Shchukin, V. I. Savenko, L. A. Kochanova andP. A. Rebinder,Dokl. Akad. Nauk. SSSR 200 (1971) 406.Google Scholar
  17. 17.
    Idem, ibid. 200 (1971) 1329.Google Scholar
  18. 18.
    A. A. Shpunt andO. A. Nabutovskaya,Sov. Phys. Solid State 15 (1973) 192.Google Scholar
  19. 19.
    N. H. Macmillan, R. D. Huntington andA. R. C. Westwood,Phil. Mag. 28 (1973) 923.CrossRefGoogle Scholar
  20. 20.
    A. R. C. Westwood, R. D. Huntington andN. H. Macmillan,J. Appl. Phys. 44 (1973) 5194.CrossRefGoogle Scholar
  21. 21.
    V. I. Savenko, L. A. Kochanova andE. D. Shchukin,Wear 56 (1979) 297.CrossRefGoogle Scholar
  22. 22.
    F. C. Brown, University of Washington, Seattle, personal communication (1989).Google Scholar
  23. 23.
    J. Gittus, “Irradiation Effects in Crystalline Solids” (Applied Science, London, 1978) p. 237.Google Scholar
  24. 24.
    K. Guckelsberger andK. Neumaier,J. Phys. Chem. Solids 36 (1975) 1353.CrossRefGoogle Scholar
  25. 25.
    W. G. Johnston, in “Progress in Ceramic Science”, Vol. 2, edited by J. E. Burke (Pergamon Press, New York, 1962) p. 1.Google Scholar
  26. 26.
    K. Sangwal, “Etching of Crystals” (North-Holland, Amsterdam, The Netherlands, 1987) p. 407.Google Scholar
  27. 27.
    A. Roth, “Vacuum Technology” (North-Holland, Amsterdam, The Netherlands, 1976).Google Scholar
  28. 28.
    E. A. Schlanger, MS thesis, The Pennsylvania State University (1986).Google Scholar
  29. 29.
    C. -Y. Huang, MS thesis, The Pennsylvania State University (1986).Google Scholar
  30. 30.
    R. C. Weast (ed.), “Handbook of Chemistry and Physics”, 56th Edn (Chemical Rubber Co., Cleveland, 1975/6) p. B-107.Google Scholar
  31. 31.
    J. J. Gilman, in “The Science of Hardness Testing and Its Research Applications”, edited by J. H. Westbrook and H. Conrad (ASM, Metals Park, Ohio, 1973) p. 51.Google Scholar
  32. 32.
    Idem, J. Appl. Phys. 44 (1973) 982.CrossRefGoogle Scholar
  33. 33.
    Idem, Acta Metall. 7 (1959) 608.CrossRefGoogle Scholar
  34. 34.
    D. G. Rickerby, B. N. Pramila Bai andN. H. Macmillan, in “Energy and Ceramics”, edited by P. Vincenzini (Elsevier, Amsterdam, 1980) p. 752.Google Scholar
  35. 35.
    C. A. Brookes, J. B. O'Neill andB. A. W. Redfern,Proc. Roy. Soc. A322 (1971) 73.CrossRefGoogle Scholar
  36. 36.
    C. A. Brookes, R. P. Burnand andJ. E. Morgan,J. Mater. Sci. 10 (1975) 2171.CrossRefGoogle Scholar
  37. 37.
    S. G. Roberts,Phil. Mag. A58 (1988) 347.CrossRefGoogle Scholar
  38. 38.
    S. G. Roberts, P. D. Warren andP. B. Hirsch,Mater. Sci. Engng A105/106 (1988) 19.CrossRefGoogle Scholar
  39. 39.
    Z. G. Liu andW. Skrotzki,Phys. Status Solidi (a) 70 (1982) 433.CrossRefGoogle Scholar
  40. 40.
    J. Grunzweig, I. M. Longman andN. J. Petch,J. Mech. Phys. Solids 2 (1954) 81.CrossRefGoogle Scholar
  41. 41.
    W. Johnson, F. U. Mahtab andJ. B. Haddow,Int. J. Mech. Sci. 6 (1964) 329.CrossRefGoogle Scholar
  42. 42.
    L. A. Davis andR. B. Gordon,J. Appl. Phys. 39 (1968) 3885.CrossRefGoogle Scholar
  43. 43.
    P. Haasen, L. A. Davis, E. Aladag andR. B. Gordon,Scripta Metall. 4 (1970) 55.CrossRefGoogle Scholar
  44. 44.
    G. Fontaine andP. Haasen,Phys. Status Solidi 31 (1969) k67.CrossRefGoogle Scholar
  45. 45.
    F. A. Mohamed andT. G. Langdon,J. Appl. Phys. 45 (1974) 1965.CrossRefGoogle Scholar
  46. 46.
    P. Haasen,Mater. Sci. Technol. 1 (1985) 1013.CrossRefGoogle Scholar
  47. 47.
    A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Oxford University Press, Oxford, 1953) p. 54.Google Scholar
  48. 48.
    R. C. Evans, “An Introduction to Crystal Chemistry”, 2nd Edn (Cambridge University Press, Cambridge, 1964) p. 37.Google Scholar
  49. 49.
    G. Simmons andH. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties” (MIT Press, Cambridge, 1971) p. 42.Google Scholar
  50. 50.
    J. J. Gilman andW. G. Johnston,Solid State Phys. 13 (1962) 147.CrossRefGoogle Scholar
  51. 51.
    R. J. Stokes,Trans. Met. Soc. AIME 224 (1962) 1227.Google Scholar
  52. 52.
    K. C. Goretta andJ. L. Routbort,J. Mater. Sci. Lett. 6 (1987) 862.CrossRefGoogle Scholar
  53. 53.
    A. D. Whapham andM. J. Makin,Phil. Mag. 5 (1960) 237.CrossRefGoogle Scholar
  54. 54.
    N. P. Scvortzova andG. P. Berezkhova,Cryst. Res. Tech. 21 (1986) 939.CrossRefGoogle Scholar
  55. 55.
    D. M. Marsh,Phil. Mag. 5 (1960) 1197.CrossRefGoogle Scholar
  56. 56.
    Idem, in “Fracture of Solids”, edited by D. C. Drucker and J. J. Gilman (Wiley, New York, 1963) p. 119.Google Scholar
  57. 57.
    A. N. Stroh,Adv. Phys. 6 (1957) 418.CrossRefGoogle Scholar
  58. 58.
    P. W. Tasker,Phil. Mag. 39 (1979) 119.CrossRefGoogle Scholar
  59. 59.
    J. J. Gilman,J. Appl. Phys. 31 (1960) 2208.CrossRefGoogle Scholar
  60. 60.
    S. J. Burns andW. W. Webb,ibid. 41 (1970) 2086.CrossRefGoogle Scholar
  61. 61.
    F. C. Frank andW. T. Read,Phys. Rev. 79 (1950) 722.CrossRefGoogle Scholar
  62. 62.
    K. Kendall,Nature 272 (1978) 710.CrossRefGoogle Scholar
  63. 63.
    Idem, J. Mater. Sci. 11 (1976) 1267.CrossRefGoogle Scholar
  64. 64.
    Idem, Proc. Roy. Soc. A361 (1978) 245.CrossRefGoogle Scholar
  65. 65.
    J. T. Hagan,J. Mater. Sci. Lett. 16 (1981) 2909.CrossRefGoogle Scholar
  66. 66.
    D. A. Rigney, L. H. Chen, M. G. S. Naylor andA. R. Rosenfield,Wear 100 (1984) 195.CrossRefGoogle Scholar
  67. 67.
    E. Breval, J. Breznak andN. H. Macmillan,J. Mater. Sci. 21 (1986) 931.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • E. A. Schlanger
    • 1
  • C. Y. Huang
    • 2
  • N. H. Macmillan
    • 3
  1. 1.New YorkUSA
  2. 2.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Mechanical EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations