Journal of Materials Science

, Volume 26, Issue 4, pp 904–908 | Cite as

Some studies of the optical properties of molybdenum-phosphate glasses

  • M. K. Hekmat-Shoar
  • C. A. Hogarth
  • G. R. Moridi


A series of binary MoO3-P2O5 and ternary MoO3-In2O3-P2O5 glasses was prepared and their optical properties were investigated. The optical absorption edge of the glasses was measured for specimens in the form of thin blown films. It was found that the fundamental absorption edge of these glasses usually occurs in the ultraviolet region. The linear variation of (αħω)1/2 with ħω where α is the absorption coefficient and ħω is the incident photon energy, is taken as evidence of non-direct interband transitions. The linear dependence of optical gap with molybdenum content indicates that the molybdenum content controls the absorption phenomena in this glassy system. The infrared spectra of all the glasses appeared to be almost the same, indicating that the infrared bands arise primarily from the vibrations of the phosphate and molybdate groups. The structure of molybdenum phosphate glasses is discussed in terms of the formation of mixed phosphate and MoO4 tetrahedra.


Infrared Spectrum Molybdate Absorption Edge Incident Photon Phosphate Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Mackenzie, “Modern Aspects of the Vitreous State” (Butterworth, London, 1965) p. 126.Google Scholar
  2. 2.
    I. G. Austin andN. F. Mott,Adv. Phys. 18 (1969) 41.CrossRefGoogle Scholar
  3. 3.
    L. Murawski, C. H. Chung andJ. D. Mackenzie,J. Non-Cryst. Solids 32 (1979) 91.CrossRefGoogle Scholar
  4. 4.
    M. Elahi, M. H. Hekmat-Shoar, C. A. Hogarth andK. A. K. Lott,J. Mater. Sci. 14 (1979) 1997.CrossRefGoogle Scholar
  5. 5.
    M. H. Hekmat-Shoar, C. A. Hogarth andG. R. Moridi,ibid. 20 (1985) 889.CrossRefGoogle Scholar
  6. 6.
    N. F. Mott andE. A. Davis, “Electronic processes in non-crystalline materials” (Oxford University Press, Oxford, 1971, 1979).Google Scholar
  7. 7.
    G. R. Moridi andC. A. Hogarth, in “Proceedings of the 7th International Conference on Amorphous and Liquid Semiconductors”, Edinburgh, 1977, edited by W. E. Spear (Centre of Industrial Consultancy, Edinburgh, 1977) p. 688.Google Scholar
  8. 8.
    C. A. Hogarth andE. Assadzadeh-Kashani,J. Mater. Sci. 18 (1983) 1255.CrossRefGoogle Scholar
  9. 9.
    R. F. Bartholomew,J. Non-Cryst. Solids 7 (1972) 221.CrossRefGoogle Scholar
  10. 10.
    K. P. Müller,Glastech, Ber. 42 (1969) 83.Google Scholar
  11. 11.
    M. Sayer andA. Mansingh,Phys. Rev. B6 (1972) 4629.CrossRefGoogle Scholar
  12. 12.
    C. A. Hogarth andG. R. Moridi,J. Mater. Sci. Lett. 3 (1984) 481.CrossRefGoogle Scholar
  13. 13.
    I. G. Austin, M. Sayer andR. S. Sussman, in “Amorphous and Liquid Semiconductors”, Vol. 2, edited by J. Stuke and W. Brening (Taylor and Francis, London, 1973) p. 1343.Google Scholar
  14. 14.
    T. Tauc, in “Optical Properties of Solids”, edited by F. Abeles (North Holland, Amsterdam, 1970) p. 279.Google Scholar
  15. 15.
    J. D. Dow andD. Redfield,Phys. Rev. B1 (1970) 3358.CrossRefGoogle Scholar
  16. 16.
    T. Minami, T. Katsuda andM. Tanaksa,J. Non-Cryst. Solids 29 (1978) 389.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • M. K. Hekmat-Shoar
    • 1
  • C. A. Hogarth
    • 2
  • G. R. Moridi
    • 3
  1. 1.Research and Development LaboratoriesTabriz RefineryTabrizIran
  2. 2.Physics DepartmentBrunei UniversityUxbridgeUK
  3. 3.Physics DepartmentThe University of the South PacificSuvaFiji

Personalised recommendations