Advertisement

Journal of Materials Science

, Volume 27, Issue 23, pp 6519–6524 | Cite as

Structural studies of phase transformations in ultrafine zirconia powders

  • E. Bernstein
  • M. G. Blanchin
  • R. Ravelle-Chapuis
  • J. Rodriguez-Carvajal
Papers

Abstract

The factors governing the existence of metastable cubic and tetragonal phases in zirconia powders are still controversial. In order to elucidate this question, the effects of calcination temperature on ultrafine powders prepared from different precursors by different low-temperature chemical routes were studied. The morphological and structural characteristics of the powders depending on the calcination temperature were determined by means of conventional and high-resolution transmission electron microscopy (CTEM and HREM) and X-ray diffraction methods (whole and peak profile fitting procedures). Important structural differences between the powders depending on the precursor were revealed by HREM. The presence of impurities and/or microstrains seems to play a major role in the stabilization of the cubic and the tetragonal phases.

Keywords

Transmission Electron Microscopy Zirconia Calcination Phase Transformation Calcination Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Wu andS. Yu,J. Mater. Sci. 25 (1990) 970.CrossRefGoogle Scholar
  2. 2.
    Y. Murase andE. Kato,J. Amer. Ceram. Soc. 66 (3) (1983) 196.CrossRefGoogle Scholar
  3. 3.
    M. G. Blanchin, L. A. Bursill andE. Bernstein,Ind. Céram. 835 (1989) 114.Google Scholar
  4. 4.
    H. M. Rietveld,Acta Crystallogr. 22 (1967) 151.CrossRefGoogle Scholar
  5. 5.
    Th. De Keijser, J. I. Langford, E. J. Mittemeijer andA. B. P. Vogels,J. Appl. Crystallogr. 15 (1982) 308.CrossRefGoogle Scholar
  6. 6.
    J. I. Langford,ibid. 11 (1978) 10.CrossRefGoogle Scholar
  7. 7.
    J. I. Langford, D. Louer, E. J. Sonneveld andJ. W. Visser,Powder Diff. 3 (1986) 211.CrossRefGoogle Scholar
  8. 8.
    J. Rodriguez, M. Anne andJ. Pannetier, Strap I. L. L. Internal Report 87RO14T (1987).Google Scholar
  9. 9.
    E. Bernstein, Doctoral thesis, University of Lyon I (1990).Google Scholar
  10. 10.
    J. Rodriguez andJ. Fontcuberta,J. Mater. Sci. 22 (1987) 1001.CrossRefGoogle Scholar
  11. 11.
    A. Benedetti, G. Fagherazzi, S. Enzo andM. Battagliarin,J. Appl. Crystallogr. 21 (1988) 543.CrossRefGoogle Scholar
  12. 12.
    T. Mitsuhashi, M. Ichiara andV. Tatsuke,J. Amér. Ceram. Soc. 57 (1974) 97.CrossRefGoogle Scholar
  13. 13.
    T. Kosmac, R. Gopalakrishnan, V. Krasevec andM. Komac,J. Phys. 47 (1986) C1–43.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • E. Bernstein
    • 1
  • M. G. Blanchin
    • 1
  • R. Ravelle-Chapuis
    • 1
  • J. Rodriguez-Carvajal
    • 2
  1. 1.Département de Physique des MatériauxUniversité Claude Bernard Lyon IVilleurbanne CédexFrance
  2. 2.Institute Laue-LangevinGrenoble Cédex 9France

Personalised recommendations