Journal of Materials Science

, Volume 27, Issue 23, pp 6481–6489 | Cite as

High temperature creep behaviour of an Ni-Cr-W-B alloy

  • H. M. Tawancy


The high-temperature creep behaviour of a solid-solution strengthened Ni-Cr-W-B alloy was studied, with emphasis on microstructural parameters. Creep strength was determined from tests conducted at 925°C/40 MPa. Various techniques of analytical electron microscopy were used to characterize the microstructure and microchemical composition. A number of microstructural parameters which promote creep strength, including (1) pinning of grain boundaries by tungsten-rich M6C carbide, (2) relatively low stacking-fault energy, and (3) boron segregation to M23C6 carbide, were identified. However, their beneficial effects were suppressed by the initial presence of discontinuously precipitated M23C6 carbide at grain boundaries which accelerated intergranular cracking. Suppression of the discontinuous grainboundary reaction and a significant improvement in creep strength could be achieved by a proper heat treatment which appeared to induce a sufficiently high defect density promoting intragranular carbide precipitation. Competition between intergranular and intragranular precipitation was found to be influenced by an external stress. Strengthening by intragranular carbide precipitates appeared to occur by an attractive interaction with dislocations. Dislocations bowing out at subboundaries, cross-slip, motion of jogged screw dislocations and generation of dislocations at high-angle grain boundaries appeared to operate simultaneously as strain-producing mechanisms during steady-state creep.


Creep Behaviour Creep Strength Microstructural Parameter Intergranular Crack M23C6 Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. M. Tawancy, D. L. Klarstrom andM. F. Rothman,J. Metals. 36(9) (1984) 58.Google Scholar
  2. 2.
    D. L. Klarstrom, H. M. Tawancy, D. E. Fluck andM. F. Rothman, in “29th International Gas Turbine Conference”, ASME Paper no. 84-GT-70 (ASME, New York, 1984).Google Scholar
  3. 3.
    Y. Monma, in “Superalloys, Supercomposites and Superceramics”, edited by J. K. Tien and T. Caulfield (Academic Press, New York, 1989) p. 339.CrossRefGoogle Scholar
  4. 4.
    J. Bressers (ed.), “Creep and Fatigue of High Temperature Alloys” (Applied Science, London, 1981) p. 145.Google Scholar
  5. 5.
    L. Bendersky, A. Rozen andA. K. Mukherjee,Int. Met. Rev. 30(1) (1985) 1.CrossRefGoogle Scholar
  6. 6.
    Brian Ralph, in “Grain-Boundary Structure and Kinetics”, ASM Materials Science Seminar (ASM, Metals Park, OH, 1980) p. 181.Google Scholar
  7. 7.
    J. O. Nilsson, P. R. Howell andG. L. Dunlop,Acta Metall. 27 (1979) 179.CrossRefGoogle Scholar
  8. 8.
    G. L. Dunlop, J. O. Nilsson andP. R. Howell,J. Microsc. 116 (1979) 115.CrossRefGoogle Scholar
  9. 9.
    H. M. Tawancy,J. Mater. Sci. 18 (1983) 2976.CrossRefGoogle Scholar
  10. 10.
    J. W. Edington, “Typical Electron Microscope Investigations” Philips, Gloeilampenfabrieken, Eindhoven, 1976) p. 38.CrossRefGoogle Scholar
  11. 11.
    T. C. Tiearney andN. J. Grant,Met. Trans. 13A (1982) 1827.CrossRefGoogle Scholar
  12. 12.
    D. B. Williams andE. P. Butler,Int. Met. Rev. 26(3) (1981) 153.Google Scholar
  13. 13.
    R. B. Scarlin,Scripta Metall. 10 (1976) 711.CrossRefGoogle Scholar
  14. 14.
    P. S. Kotval andH. Hatwell,Trans. AIME 245 (1969) 1821.Google Scholar
  15. 15.
    M. N. Thompson, PhD thesis, University of Cambridge (1971).Google Scholar
  16. 16.
    K. N. Tu andD. Turnbull,Acta Metall. 15 (1967) 369.CrossRefGoogle Scholar
  17. 17.
    Idem, ibid. 15 (1967) 1317.CrossRefGoogle Scholar
  18. 18.
    A. H. Cooper, V. C. Nardone andJ. K. Tien, in “Superalloys, Supercomposites and Superceramics” edited by J. K. Tien and T. Caulfield (Academic Press, New York, 1989) p. 357.Google Scholar
  19. 19.
    J. H. Schroer andE. Arzt,Script Metall. 19 (1985) 1129.CrossRefGoogle Scholar
  20. 20.
    V. C. Nardone, D. Matejczyk andJ. K. Tien,Acta Metall. 32 (1984) 1509.CrossRefGoogle Scholar
  21. 21.
    V. C. Nardone andJ. K. Tien,Scripta Metall. 17 (1983) 467.CrossRefGoogle Scholar
  22. 22.
    N. Terao andB. Sasmal,Metallogr. 13 (1980) 117.CrossRefGoogle Scholar
  23. 23.
    E. Hornbogen,Metal. Trans. 3 (1972) 2717.CrossRefGoogle Scholar
  24. 24.
    J. D. Destafani,Adv. Mater. Process. 115(2) (1989) 37.Google Scholar
  25. 25.
    C. Hammond andJ. Nutting,Met. Sci. J. 11 (1977) 474.CrossRefGoogle Scholar
  26. 26.
    R. W. Balluffi, in “Grain-Boundary Structure and Kinetics” (ASM Materials Science Seminar, Metals Park, OH, 1980) p. 297.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • H. M. Tawancy
    • 1
  1. 1.Materials Characterization Laboratory, Metrology, Standards and Materials Division, Research InstituteKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations