Journal of Materials Science

, Volume 27, Issue 23, pp 6475–6480 | Cite as

Plasma surface modification of advanced organic fibres

Part III Effects on the mechanical properties of aramid/vinylester and extended-chain polyethylene/vinylester composites
  • J. R. Brown
  • P. J. C. Chappell
  • Z. Mathys


Aramid and extended-chain polyethylene fibres have been treated in ammonia and oxygen plasmas in order to enhance adhesion to vinylester resins and thereby improve fibre/resin interfacial properties in composites made from these materials. For both aramid/vinylester and extended-chain polyethylene/vinylester composites, the plasma treatments result in significant improvements in interlaminar shear strength and flexural strength. Extended-chain polyethylene/vinylester composites also exhibit increased flexural modulus. Scanning electron and optical microscopic observations have been used to examine the microscopic basis for these results, which are compared with results previously obtained for aramid/epoxy and extended-chain polyethylene/epoxy composites. It is concluded that the increased interlaminar shear and flexural properties of vinylester matrix composites are due to improved wetting of the surface-treated fibres by the vinylester resin, rather than covalent chemical bonding.


Shear Strength Flexural Strength Plasma Treatment Oxygen Plasma Interfacial Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Yeung andL. J. Broutman,Polym. Engng Sci. 18 (1978) 62.CrossRefGoogle Scholar
  2. 2.
    S. J. Monte andG. Sugarman, in “Proceedings of the 35th Annual Technical Conference”, The Society of the Plastics Industry, 4–8 February 1980 (The Society of the Plastics Industry, New York, 1980) p. 23-F/l.Google Scholar
  3. 3.
    J. B. Donnet,Carbon 6 (1968) 161.CrossRefGoogle Scholar
  4. 4.
    L. S. Penn, T. J. Byerley andT. K. Liao,J. Adhesion 23 (1987) 163.CrossRefGoogle Scholar
  5. 5.
    L. S. Penn andB. Jutis,ibid. 30 (1989) 67.CrossRefGoogle Scholar
  6. 6.
    L. S. Penn, G. C. Tesoro andH. X. Zhou,Polym. Compos. 9 (1988) 184.CrossRefGoogle Scholar
  7. 7.
    H. M. Stoller andR. E. Allred, in “Proceedings of the 18th International SAMPE Technical Conference”, Seattle, WA, 7–9 October, 1986, edited by J. T. Hoggett, S. G. Hill and J. C. Johnson (SAMPE, Seattle, WA, 1986) p. 993.Google Scholar
  8. 8.
    M. Breznick, J. Banjabi, H. Guttmann andG. Marom,Polym. Commun. 28 (1987) 55.Google Scholar
  9. 9.
    R. Benrashid andG. C. Tesoro,Text. Res. J. 60 (1990) 334.CrossRefGoogle Scholar
  10. 10.
    R. C. T. Chou, J. Y. C. Tsai andL. S. Penn, in “Proceedings of the 35th International SAMPE Symposium”, Anaheim, CA, 2–5 April, 1990, edited by G. Janicki, V. Bailey and H. Schjelderup (SAMPE, Anaheim, CA, 1990) p. 214.Google Scholar
  11. 11.
    F. P. M. Mercx andP. J. Lemstra,Polym. Commun. 31 (1990) 252.Google Scholar
  12. 12.
    J. R. Brown, P. J. C. Chappell andZ. Mathys,J. Mater. Sci. 26 (1991) 4172.CrossRefGoogle Scholar
  13. 13.
    Idem, ibid, in press.CrossRefGoogle Scholar
  14. 14.
    M. Nardin andI. M. Ward,Mater. Sci. Technol. 3 (1987) 814.CrossRefGoogle Scholar
  15. 15.
    P. J. C. Chappell andD. R. Williams,J. Colloid Interface Sci. 128 (1989) 450.CrossRefGoogle Scholar
  16. 16.
    N. H. Ladizesky andI. M. Ward,Compos. Sci. Technol. 26 (1986) 129.CrossRefGoogle Scholar
  17. 17.
    S. L. Kaplan, P. W. Rose, H. X. Nguyen andH. W. Chang, in “Proceedings of the 33rd International SAMPE Symposium”, Anaheim, CA, 7–10 March 1988, edited by G. Carrillo, E. D. Newell, W. D. Brown and P. Phelan (SAMPE, Covina, CA, 1988) p. 551.Google Scholar
  18. 18.
    H. X. Nguyen, G. Riahi, G. Wood andA. Poursartip,ibid., p. 1721.Google Scholar
  19. 19.
    H. X. Nguyen, G. C. Weedon andH. W. Chang, in “Proceedings of the 34th International SAMPE Symposium”, Reno, NV, 8–11 May 1989, edited by G. A. Zakrzewski, D. Mazenko, S. T. Peters and C. D. Dean (SAMPE, Covina, CA, 1989) p. 1603.Google Scholar
  20. 20.
    G. A. George andH. A. Willis,High Perf. Polym. 1 (1990) 335.CrossRefGoogle Scholar
  21. 21.
    P. J. C. Chappell, J. R. Brown, G. A. George andH. A. Willis,Surf. Interface Anal. 17 (1991) 143.CrossRefGoogle Scholar
  22. 22.
    C. E. Browning, F. L. Abrams andJ. M. Whitney, ASTM STP 797 (American Society for Testing and Materials, Philadelphia, PA, 1983) p. 54.Google Scholar
  23. 23.
    ASTM D 2344-76, “Apparent Interlaminar Shear Strength of Parallel Fiber Composites by Short-Beam Method” (American Society for Testing and Materials, Philadelphia, PA, 1976).Google Scholar
  24. 24.
    ASTM D 790-86 “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials” (American Society for Testing and Materials, Philadelphia, PA, 1986).Google Scholar
  25. 25.
    C. Zweben, W. S. Smith andM. W. Wardle, ASTM STP 674 (American Society for Testing and Materials, Philadelphia, PA, 1978) p. 228.Google Scholar
  26. 26.
    J. Kalantar andL. T. Drzal,J. Mater. Sci. 25 (1990) 4186.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. R. Brown
    • 1
  • P. J. C. Chappell
    • 1
  • Z. Mathys
    • 1
  1. 1.DSTO Materials Research LaboratoryAscot ValeAustralia

Personalised recommendations