Journal of Materials Science

, Volume 27, Issue 23, pp 6426–6436 | Cite as

Laser transformation of Pb-Sb, Pb-Ca and Pb-Sb-Sn-As alloys

  • N. B. Dahotre
  • M. H. McCay
  • T. D. McCay
  • M. M. Kim


The laser treatment of the conventional battery grid alloys such as lead-calcium, lead-antimony and lead-antimony-tin-arsenic alloys was performed to improve mechanical, creep, and corrosion properties. The associated high cooling rate and increased solid solubility produced refined microstructures with unconventional and nonequilibrium phases. These effects resulted in an increase in the ultimate tensile strength, yield strength and modulus of elasticity and a decrease in elongation at fracture. Hardness of the laser-treated lead alloys was also increased substantially. Creep tests conducted under the conditions of constant load (1 kg) and temperature (25°C) showed a large improvement in the creep resistance compared to that of the as-received lead alloys. Laser-surface treatment of lead-calcium and lead-antimony appears to decrease the weight-loss compared to as-received alloys during potentiostatic corrosion tests. The degree of the weight-loss varied for different alloys.


Yield Strength Ultimate Tensile Strength Creep Test Corrosion Test Creep Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. E. Howe, in “AIME Annual Meeting”, 27 February–3 March 1966 (The Metallurgical Society of AIME, New York, 1966), Reprint no. 2A-RF-5.Google Scholar
  2. 2.
    M. Myers, US Pat. 4 629 516, December 1986.Google Scholar
  3. 3.
    N. B. Dahotre, M. H. McCay andT. D. McCay, ILZRO Project LE-395, Progress Report no. 1, June 1990.Google Scholar
  4. 4.
    Idem, ibid., Progress Report no. 2, December 1990.Google Scholar
  5. 5.
    M. Cohen, B. H. Kear andR. Mehrabian, in “Proceedings of 2nd International Conference on Rapid Solidification Processing”, edited by B. H. Kear, B. C. Giessen and M. Cohen, Reston, Virginia, March 1980 (Claitors Baton Rouge, LA, 1980) p. 1.Google Scholar
  6. 6.
    Powder Diffraction File (Inorganic Section), Vol. 1–40 (JCPDS International Center for Diffraction Data, PA, USA).Google Scholar
  7. 7.
    J. Singh andJ. Mazumder,Met. Trans. 18A (1987) 313.CrossRefGoogle Scholar
  8. 8.
    N. B. Dahotre andK. Mukherjee,J. Mater. Sci. 25 (1990) 445.CrossRefGoogle Scholar
  9. 9.
    N. B. Dahotre, T. D. McCay andM. H. McCay,J. Metals 42 (6) (1990) 44.Google Scholar
  10. 10.
    N. B. Dahotre, T. D. McCay andM. H. McCay,J. Appl. Phys. 65 (1989) 5072.CrossRefGoogle Scholar
  11. 11.
    N. B. Dahotre, M. H. McCay, T. D. McCay, S. Gopinathan andL. F. Allard,J. Mater. Res. 6 (3) (1991) 514.CrossRefGoogle Scholar
  12. 12.
    F. Garafalo, in “Fundamentals of Creep and Creep Rupture in Metals” (Macmillan, New York, 1966).CrossRefGoogle Scholar
  13. 13.
    G. Garofalo, W. Domis andF. Gemmingen,Trans. AIME 230 (1964) 1460.Google Scholar
  14. 14.
    E. R. Parker,Trans. ASM 50 (1958) 52.Google Scholar
  15. 15.
    D. Hanson,Trans. AIME 133 (1939) 15.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • N. B. Dahotre
    • 1
  • M. H. McCay
    • 1
  • T. D. McCay
    • 1
  • M. M. Kim
    • 2
  1. 1.Center for Laser ApplicationsThe University of Tennessee Space InstituteTullahomaUSA
  2. 2.International Lead Zinc Research Organization Inc.Research Triangle ParkRaleighUSA

Personalised recommendations