Journal of Materials Science

, Volume 27, Issue 23, pp 6371–6378 | Cite as

Structure and mechanics of cement foams

  • T. D. Tonyan
  • L. J. Gibson


Lightweight cellular concretes have been available for a number of years. They are made by adding aluminium powder to the cement mix or by introducing a foaming agent to a cement slurry. Materials with densities in the range 320–1600 kgm−3 are commonly available commercially; they are used for insulated concrete roof-deck systems, masonry blocks, cladding panels and engineered fills for geotechnical applications. Their unique set of properties make them attractive as a foam core material for structural sandwich panels: they have moderate thermal insulation, high heat capacity, high stiffness, excellent fire resistance and low cost relative to polymer foams. The structure and mechanical behaviour of cellular cements ranging in density from 160–1600 kg m−3 are described.


Foam Heat Capacity Thermal Insulation Core Material Structural Sandwich 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. H. Taylor, “The production, properties and uses of foamed concrete”,Precast Concrete (1974).Google Scholar
  2. 2.
    A. Short andW. Kinniburgh, “Lightweight Concrete”, 3rd Edn (Applied Science, London, 1978).Google Scholar
  3. 3.
    Misawa Homes Co. Ltd, “PALC Technical information” (Tokyo, 1988).Google Scholar
  4. 4.
    T. W. Reichard, “Mechnical properties of insulating concretes”, in “Lightweight Concrete”, edited by D. P. Jenny and A. Litvin, (American Concrete Institute, Detroit, 1971) pp. 253–316.Google Scholar
  5. 5.
    T. D. Tonyan, PhD thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA (1991).Google Scholar
  6. 6.
    L. J. Gibson andM. F. Ashby,Proc. Roy. Soc. Lond. A382 (1982) 43.CrossRefGoogle Scholar
  7. 7.
    R. W. Rice, “Microstructural dependence of mechanical properties of ceramics”, in “Treatise on Materials Science and Technology”, Vol. II, edited by R. K. McCrone (Academic Press, New York, 1977) pp. 199–381.Google Scholar
  8. 8.
    Gibson, L. J., PhD Thesis, Cambridge, UK (1981).Google Scholar
  9. 9.
    F. P. Knudsen,J. Amer. Ceram. Soc. 42 (1959) 376.CrossRefGoogle Scholar
  10. 10.
    R. M. Spriggs,ibid. 45 (1962) 454.CrossRefGoogle Scholar
  11. 11.
    R. M. Spriggs andL. A. Brissette,ibid. 45 (1962) 198.CrossRefGoogle Scholar
  12. 12.
    R. M. Spriggs, L. A. Brissette andT. Vasilos,ibid. 45 (1962) 400.CrossRefGoogle Scholar
  13. 13.
    R. M. Spriggs andT. Vasilos,ibid. 46 (1963) 224.CrossRefGoogle Scholar
  14. 14.
    R. W. Rice,ibid. 59 (1976) 536.CrossRefGoogle Scholar
  15. 15.
    G. J. Verbeck andR. A. Helmuth, in “Proceedings of the Fifth International Symposium on the Chemistry of Cement”, Vol. 3, Tokyo (1968) pp. 1–32.Google Scholar
  16. 16.
    D. M. Roy andG. R. Gouda,J. Amer. Ceram. Soc. 56 (1973) 549.CrossRefGoogle Scholar
  17. 17.
    W. Weibull,Ing. Vetensk Akad. Proc. 151 (1939) 1.Google Scholar
  18. 18.
    M. F. Ashby andD. R. H. Jones, “Engineering Materials” 2 (Pergamon, Oxford, 1986).Google Scholar
  19. 19.
    L. J. Gibson andM. F. Ashby, “Cellular Solids: Structure and Properties” (Pergamon, Oxford, 1988).Google Scholar
  20. 20.
    L. M. Legatski, “Significance of tests and properties of concrete and concrete making materials”, ASTM Publication STP169B, ASTM Committee C-9 on Concrete and Aggregate (American Society for Testing and Materials, Philadelphia, PA, 1978).Google Scholar
  21. 21.
    R. W. Rice andB. K. Speronello,J. Amer. Ceram. Soc. 59 (1976) 330.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • T. D. Tonyan
    • 1
  • L. J. Gibson
    • 1
  1. 1.Department of Civil EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations