Advertisement

Journal of Materials Science

, Volume 27, Issue 23, pp 6341–6351 | Cite as

Finite element modelling of creep deformation in fibre-reinforced ceramic composites

  • Y. H. Park
  • J. W. Holmes
Papers

Abstract

The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-Si3N4 matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading.

Keywords

Residual Stress Creep Rate Creep Strain Creep Deformation Creep Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. C. Wei andP. F. Becher,Amer. Ceram. Soc. Bull. 64 (1985) 298.Google Scholar
  2. 2.
    J. J. Brennan andK. M. Prewo,J. Mater. Sci. 17 (1982) 2371.CrossRefGoogle Scholar
  3. 3.
    R. T. Bhatt,NASA Technical Report 85-C-14 (1985).Google Scholar
  4. 4.
    H. Kodama, H. Sakamoto, andT. Miyoshi,J. Amer. Ceram. Soc. 72 (1989) 551.CrossRefGoogle Scholar
  5. 5.
    F. Abbe, J. Vicens andJ. L. Chermant,J. Mater. Sci. Lett. 8 (1989) 1026.CrossRefGoogle Scholar
  6. 6.
    J. W. Holmes,J. Mater. Sci. 26 (1991) 1808.CrossRefGoogle Scholar
  7. 7.
    M. Mclean,Mater. Res. Soc. Symp. Proc. 120 (1988).Google Scholar
  8. 8.
    H. Lilholt,Compos. Sci. and Technol. 29 (1985) 277.CrossRefGoogle Scholar
  9. 9.
    T. L. Dragon andW. D. Nix,Acta Metall, Mater. 38 (1990) 1941.CrossRefGoogle Scholar
  10. 10.
    J. R. Brockenbrough, S. Suresh andH. A. Wienecke, ALCOA Laboratories Technical Report no. 57-89-35 (April 1990).Google Scholar
  11. 11.
    J. A. Dicarlo,J. Mater. Sci. 21 (1986) 217.CrossRefGoogle Scholar
  12. 12.
    D. C. Larson, J. W. Adams, L. R. Johnson, A. P. S. Teotia andL. G. Hill, in “Ceramic Materials for Advanced Heat Engines; Technical and Economical Evaluation” (Noyes, Park Ridge, NJ, 1985).Google Scholar
  13. 13.
    J. W. Laughner andR. T. Bhatt,J. Amer. Ceram. Soc. 72 (1989) 2017.CrossRefGoogle Scholar
  14. 14.
    G. Morscher, P. Pirouz andA. H. Heuer,ibid. 73 (1990) 713.CrossRefGoogle Scholar
  15. 15.
    ABAQUS Manual,” (Hibbitt, Karlson and Sorensen Inc., Providence, RI, 1989).Google Scholar
  16. 16.
    A. H. Chokshi, andJ. R. Porter,J. Amer. Ceram. Soc. 68 (1985) C-144.CrossRefGoogle Scholar
  17. 17.
    R. D. Nixon, S. Chevacharoenkul, M. L. Huckabee, S. T. Buljan andR. F. Davis,Mater. Res. Soc. Symp. Proc. 78 (1987) 295.CrossRefGoogle Scholar
  18. 18.
    J. W. Holmes,J. Amer. Ceram. Soc. 74 (1991) 1639.CrossRefGoogle Scholar
  19. 19.
    T. Fett, G. Himsolt andD. Munz,Adv. Ceram. Mater. 1 (1986) 179.CrossRefGoogle Scholar
  20. 20.
    R. Kossowsky, D. G. Miller andE. S. Diaz,J. Mater. Sci. 10 (1975) 983.CrossRefGoogle Scholar
  21. 21.
    J. W. Holmes,J. Compos. Mater. 26 (1992) 915.CrossRefGoogle Scholar
  22. 22.
    B. Budiansky, J. W. Hutchinson andA. G. Evans,J. Meck. Phys. Solids 34 (1986) 167.CrossRefGoogle Scholar
  23. 23.
    J. L. Chaboche,J. Appl. Mech. 55 (1988) 65.CrossRefGoogle Scholar
  24. 24.
    R. M. Arons andJ. K. Tien,J. Mater. Sci. 15 (1980) 2046.CrossRefGoogle Scholar
  25. 25.
    M. S. Seltzer,Amer. Ceram. Soc. Bull. 56 (1977) 418.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Y. H. Park
    • 1
  • J. W. Holmes
    • 1
  1. 1.Ceramic Composites Research Laboratory, Department of Mechanical Engineering and Applied MechanicsThe University of MichiganAnn ArborUSA

Personalised recommendations