Journal of Materials Science

, Volume 27, Issue 23, pp 6335–6340 | Cite as

Pressureless sintering and related reaction phenomena of Al2O3-doped B4C

  • Chae Hyun Lee
  • Chong Hee Kim


The effects of alumina on the densification of boron carbide and related reaction phenomena in alumina-doped B4C were studied. Pressureless sintering was conducted at various temperatures for 15 min in a flowing Ar atmosphere. The addition of alumina improved the densification of boron carbide. Maximum density of 96% theoretical was obtained with the 3 wt % alumina-doped B4C sintered at 2150°C. Abnormal (or exaggerated) grain growth was observed in the specimen containing more than 4 wt % alumina. In the B4C-Al2O3 reaction couples, good wetting of the liquid phase on the boron carbide grains was observed. X-ray diffraction and Auger electron spectra showed that the AlB12C2 phase was formed by the reaction between boron carbide and alumina. It is suggested that these phenomena promote the densification of boron carbide.


Polymer Alumina Atmosphere Carbide Boron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Samsonov andI. M. Vinitskii, “Handbook of Refractory Compounds”, (IFI/Plenum, NY, 1980).CrossRefGoogle Scholar
  2. 2.
    M. L. Milkins, in “Boron and Refractory Borides”, edited by V. I. Matkovich (Springer-Verlag, NY, 1977) p. 633.CrossRefGoogle Scholar
  3. 3.
    K. Reinmuth, A. Lipp, H. Knoch andK. A. Schwetz,J. Nucl. Mat. 124 (1984) 175.CrossRefGoogle Scholar
  4. 4.
    Y. Kanno,Yogyo-Kyokai-Shi 94 (1986) 449.CrossRefGoogle Scholar
  5. 5.
    R. Angers andM. Beauvy,Ceram. Int. 10 (1983) 49.CrossRefGoogle Scholar
  6. 6.
    T. Vasilos andS. K. Dutta,Amer. Ceram. Soc. Bull. 53 (1973) 453.Google Scholar
  7. 7.
    M. A. Kuzenkova, P. S. Kislyi, B. L. Grabchuk andN. I. Bodnaruk,J. Less-Common Met. 67 (1979) 217.CrossRefGoogle Scholar
  8. 8.
    D. Stibbs, C. G. Brown andR. Thompson, US Patent, 3146 571(1973).Google Scholar
  9. 9.
    K. A. Schwetz andW. Grellner,J. Less-Common Met. 82 (1981) 37.CrossRefGoogle Scholar
  10. 10.
    S. L. Dole andS. Prochazka,Ceram. Eng. Sci. Proc. 6 (1985) 1151.CrossRefGoogle Scholar
  11. 11.
    S. Prochazka, S. L. Dole andC. I. Hejna,J. Amer. Ceram. Soc. 68 (1985) C-235.CrossRefGoogle Scholar
  12. 12.
    D. K. Kim andC. H. Kim,Adv. Ceram. Mat. 3 (1988) 52.CrossRefGoogle Scholar
  13. 13.
    I. A. Aksay, C. E. Hoge andJ. A. Pask,J. Phys. Chem. 78 (1974) 1178.CrossRefGoogle Scholar
  14. 14.
    D. C. Halverson, A. J. Pyzik andI. A. Aksay,Ceram. Eng. Sci. Proc. 6 (1985) 736.CrossRefGoogle Scholar
  15. 15.
    D. C. Halverson, A. J. Pyzik, I. A. Aksay, andW. E. Snowden,J. Amer. Ceram. Soc. 72 (1989) 775.CrossRefGoogle Scholar
  16. 16.
    A. J. Pyzik, I. A. Aksay andM. Sarikaya, in “Ceramic Microstructures '86 Role of Interface”, edited by J. A. Pask and A. G. Evans (Plenum, New York, 1986) p. 45.Google Scholar
  17. 17.
    R. G. Lange, Z. A. Munir andJ. B. Holt, in “Sintering Processes”, edited by G. C. Kuczynski (Plenum, New York, 1979) p. 311.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Chae Hyun Lee
    • 1
  • Chong Hee Kim
    • 1
  1. 1.Department of Ceramic Science and EngineeringKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations