Journal of Materials Science

, Volume 27, Issue 23, pp 6316–6320 | Cite as

Theoretical study of photoresponse to pulsed radiation in n-InSb in the temperature range 77–300 K

  • Rita Chaddha
  • Deepti Lehri
  • Rajesh Mohan
  • Feroz Ahmed


The results of a theoretical simulation of a transient experiment in n-InSb in the temperature range 77–300 K, are reported. Minority carrier lifetimes for the three recombination processes, radiative, SRH and Auger, have been calculated at different temperatures using the temperature dependence of intrinsic carrier concentration,ni, and density of states effective mass of heavy holes,md. It was found that around room temperature the lifetimes for the three processes become comparable and at higher temperatures the Auger lifetime becomes dominant. This fact was ignored in previous work where only SRH and radiative processes were considered in the calculation of effective lifetime. The present results of effective lifetime in n-InSb are in reasonably good agreement with the results obtained previously. The effect of higher time modes on the decay of photoresponse to pulsed radiation is discussed. An instantaneous time constant has been defined and its variation with time at different temperatures has been studied.


Recombination Auger Carrier Concentration Effective Mass Instantaneous Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. N. Zitter, A. J. Strauss andA. E. Attard,Phys. Rev. 115 (1959) 266.CrossRefGoogle Scholar
  2. 2.
    R. A. Laff andH. Y. Fan,ibid. 121 (1961) 53.CrossRefGoogle Scholar
  3. 3.
    D. N. Nosledov andYu. S. Sametannikova,Sov. Phys. Solid State 4 (1962) 78.Google Scholar
  4. 4.
    J. E. L. Hollis, S. C. Choo andE. L. Heasell,J. Appl. Phys. 38 (1967) 1626.CrossRefGoogle Scholar
  5. 5.
    A. S. Volkov andV. V. Galavanov,Sov. Phys. Semicond. I (1967) 129.Google Scholar
  6. 6.
    M. R. Loloee, D. G. Seiler andG. B. Ward,Appl. Phys. Lett. 53 (1988) 2188.CrossRefGoogle Scholar
  7. 7.
    G. K. Wertheim,Phys. Rev. 104 (1956) 662.CrossRefGoogle Scholar
  8. 8.
    S. R. Dhariwal, L. S. Kothari andS. C. Jain,J. Phys. D Appl. Phys. 9 (1976) 631.CrossRefGoogle Scholar
  9. 9.
    Idem., Solid State Electron. 20 (1977) 297.CrossRefGoogle Scholar
  10. 10.
    O. Von Roos,J. Appl. Phys. 52 (1981) 5833.CrossRefGoogle Scholar
  11. 11.
    T. S. Moss,Proc. Phys. Soc. B 67 (1955) 985.Google Scholar
  12. 12.
    H. Hrostowskii, F. Morin, T. Geballe andG. Weatley,Phys. Rev. 100 (1955) 1672.CrossRefGoogle Scholar
  13. 13.
    M. Oszwaldowski andM. Zimpel,J. Phys. Chem. Solids 49 (1988) 1179.CrossRefGoogle Scholar
  14. 14.
    S. K. Sharma andV. K. Tewary,J. Phys. D Appl. Phys. 15 (1982) 1077.CrossRefGoogle Scholar
  15. 15.
    P. T. Landsberg andM. S. Abrahams, in “Sixteenth IEEE Photovoltaic Specialists Conference’, 27–30 September, San Diego, CA (1982) p. 490.Google Scholar
  16. 16.
    W. vanRoosbroeck andW. Shockley,Phys. Rev. 94 (1954) 1558.CrossRefGoogle Scholar
  17. 17.
    G. W. Gobeli andH. Y. Fan,ibid. 119 (1960) 613.CrossRefGoogle Scholar
  18. 18.
    A. R. Beattie andP. T. Landsberg,Proc. R. Soc. A 249 (1959) 16.CrossRefGoogle Scholar
  19. 19.
    A. N. Blaut-Blachev, M. I. Iglitsyn, V. S. Ivleva andV. I. Sylyanina,Sov. Phys. Semicond. 9 (1975) 247.Google Scholar
  20. 20.
    F. Oswald.Z. Naturforsch. 10A (1955) 927.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Rita Chaddha
    • 1
  • Deepti Lehri
    • 1
  • Rajesh Mohan
    • 1
  • Feroz Ahmed
    • 1
  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations