Journal of Materials Science

, Volume 27, Issue 23, pp 6311–6315 | Cite as

Effect of heat treatment on the infrared absorption spectra of Sr-Na borosilicate glass

  • S. Taha
  • M. Auf


Internal modes of vibrations are studied here at different temperatures (27–800°C) and in the frequency range 200–4000 cm−1 through heat treatment. The baseline method was used. The strong bands of SiO4 tetrahedra in this glass show an increase in absorbance at high temperature (600–800°C). The deformation of SiO4 tetrahedra is investigated. This is found to depend on the ionic radius of the divalent metal oxide introduced, and the coordination number of the cation. Also from a study of the temperature dependence of the relative integrated intensity of the modes 600–800 and 850–1450 cm−1, the relaxation time and rotational energy barrier of the glasses selected indicate that the glassy phases are transformed to crystalline phases at ∼500°C.


Heat Treatment Absorption Spectrum Relaxation Time Metal Oxide Crystalline Phasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. P. Lyon,Nature 196 (1962) 266.CrossRefGoogle Scholar
  2. 2.
    A. Hadni, J. Clandel, X. Gerbausc, G. Morlet andJ. M. Munier,Appl. Opt. 4 (1965) 487.CrossRefGoogle Scholar
  3. 3.
    J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin andP. Strimer,J. Phys. Chem. Solids 28 (1967) 1589.CrossRefGoogle Scholar
  4. 4.
    P. T. T. Wang andE. Whalley,Discuss. Faraday Soc. 50 (1970) 94.CrossRefGoogle Scholar
  5. 5.
    G. J. Exarhos andW. M. Risen,J. Chem. Phys. Lett. (1973).Google Scholar
  6. 6.
    V. A. Florinskaya andR. S. Rechankina,Zh. Strukt. Khim. 4 (6) (1962) 850.Google Scholar
  7. 7.
    M. Hass,J. Phys. Chem. Solids 31 (1970) 415.CrossRefGoogle Scholar
  8. 8.
    D. Crozier andR. W. Donglas,Phys. Chem. Glasses 6 (6) (1965) 240.Google Scholar
  9. 9.
    J. R. Sweet andW. B. White,ibid. 10 (1969) 246.Google Scholar
  10. 10.
    J. R. Ferraro andM. H. Manghanami,J. Appl. Phys. 43 (1972) 4595.CrossRefGoogle Scholar
  11. 11.
    R. J. Boll,Rep. Progr. Phys. 35 (1972) 1315.CrossRefGoogle Scholar
  12. 12.
    E. P. Markin andN. N. Sobolev,Opt. Spectry. (USSR) English translation9 (1960) 309.Google Scholar
  13. 13.
    W. B. White,Mater. Res. Bull. 2 (1967) 281.Google Scholar
  14. 14.
    P. E. Jellyman andJ. P. Procter,Trans. Soc. Glass. Techn. 39 (1955) T173.Google Scholar
  15. 15.
    G. J. Exarhos andW. M. Risen Jr,Chem. Phys. Lett. 10 (1971) 484.CrossRefGoogle Scholar
  16. 16.
    Y. C. Frenkel, “Kinetic Theory of Liquids” (Izv. Akad. Nauk. SSSR, 1959).Google Scholar
  17. 17.
    M. Auf andS. Taha,Ann. Physik in press.Google Scholar
  18. 18.
    R. J. Charles andF. E. Wagstaff,J. Amer. Ceram. Soc. 51 (1968) 16.CrossRefGoogle Scholar
  19. 19.
    W. A. Pliskin andP. P. Castrucci,Electrochem. Tech. 6 (1968) 85.Google Scholar
  20. 20.
    R. C. Mazzi andB. E. Warren,J. Appl. Cryst. 2 (1969) 164.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • S. Taha
    • 1
  • M. Auf
    • 1
  1. 1.Physics Department, Faculty of ScienceCairo UniversityOrman, GizaEgypt

Personalised recommendations