Journal of Materials Science

, Volume 27, Issue 23, pp 6279–6290 | Cite as

In situ straining: crack development in thin foils of Ni3Al

  • R. Maurer


Foils of stoichiometric Ni3Al were deformedin situ in a transmission electron microscope. Under plane stress conditions the crack propagated along slip planes, i.e. along {1 1 1} planes. This is in contrast to the intergranular fracture mode of bulk material. In the direction of the crack path, directly in front of the crack tip (but in the plastic zone), inverse dislocation pileups developed during straining. These dislocations are screw dislocations with Burgers vectorsb=a〈110〉 andb=a/2〈110〉, respectively. Owing to their extremely low Peierls stresses, these dislocations are highly mobile on {1 1 1} planes. Because the slip plane of these screw dislocations is coplanar to the crack plane, the plastic part of the crack development corresponds to shear cracking of the mode III type. Calculation of the local stress intensity factor,kIC, confirmed that cleavage fracture occurs in mode I deformation, which is typical of the crack characteristics of Ni3Al foils. Crack behaviour of Ni3Al is similar to that of simple b c c metals because of the comparable relations of thek values.


Stress Intensity Factor Plastic Zone Ni3Al Fracture Mode Slip Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Izumi,Trans. JIM 19 (1978) 203.CrossRefGoogle Scholar
  2. 2.
    C. L. White andD. F. Stein,Metall. Trans. 9A (1978) 13.CrossRefGoogle Scholar
  3. 3.
    K. Aoki andO. Izumi,Nippon Kinzoku Gakkaishi 43 (1979) 1190.Google Scholar
  4. 4.
    C. C. Koch, J. A. Horton, C. T. Liu, O. B. Cavin andJ. O. Scarborough, in “Proceedings of the 3rd International Conference on Rapid Solidification”, edited by R. Mehrabian (NBS Gaithersburg, Maryland, 1982) pp. 264–9.Google Scholar
  5. 5.
    C. T. Liu, C. L. White, C. C. Koch andE. H. Lee, in “Proceedings of the Symposium on High Temperature Materials Chemistry II”, edited by Z. S. Munir and D. Cubricciotti (The Electrochemical Society, 1983) pp. 32–41.Google Scholar
  6. 6.
    E. M. Schulson, D. L. Davidson andD. Viens,Metall Trans. 14A (1983) 1523.CrossRefGoogle Scholar
  7. 7.
    A. I. Taub, S. C. Huang andK. M. Chang,ibid. 15A (1984) 399.CrossRefGoogle Scholar
  8. 8.
    C. T. Liu, C. L. White andJ. A. Horton,Acta Metall. 33 (1985) 213.CrossRefGoogle Scholar
  9. 9.
    T. Ogura, S. Hanada, T. Mazumoto andO. Izumi,Metall. Trans. 16A (1985) 441.CrossRefGoogle Scholar
  10. 10.
    S. P. Chen, A. F. Voter andD. J. Srolovitz,Scripta Metall. 20 (1986) 1389.CrossRefGoogle Scholar
  11. 11.
    S. M. Foiles, in “High Temperature Ordered Intermetallic Alloys II”, edited by N. S. Stoloff, C. C. Koch, C. T. Liu and O. Izumi, Materials Research Society Proceedings, Vol. 81 (MRS, Pittsburg, PA, 1987) p. 51.Google Scholar
  12. 12.
    J. E. Hack, D. J. Srolovitz andS. P. Chen,Scripta Metall. 20 (1986) 1699.CrossRefGoogle Scholar
  13. 13.
    C. T. Liu andJ. O. Stiegler,Science 22 (1984) 636.CrossRefGoogle Scholar
  14. 14.
    N. S. Stoloff andR. G. Davis, “The Mechanical Properties of Ordered Alloys”, in “Progress in Materials Science”, Vol. 13, edited by B. Colmers and W. Hume-Rothery (1966).Google Scholar
  15. 15.
    S. Hanada, M. S. Kim, S. Watanabe andO. Izumi,Scripta Metall. 21 (1987) 277.CrossRefGoogle Scholar
  16. 16.
    I. Baker, E. M. Schulson andJ. A. Horton,Acta Metall. 35 (1987) 1533.CrossRefGoogle Scholar
  17. 17.
    G. M. Bond, I. M. Robertson andH. K. Birnbaum,J. Mater. Res. 2 (1987) 436.CrossRefGoogle Scholar
  18. 18.
    R. Maurer andU. Salzberger,Metallography, in press.Google Scholar
  19. 19.
    A. K. Kuru Villa andN. S. Stoloff,Scripta Metall. 19 (1985) 84.Google Scholar
  20. 20.
    B. H. Kear andM. F. Hornbecher,Trans. ASM 59 (1966) 155.Google Scholar
  21. 21.
    P. H. Thornton, R. G. Davies andT. L. Johston,Metall. Trans. 1 (1970) 207.Google Scholar
  22. 22.
    S. Takuchi andE. Kuramoto,Acta Metall. 21 (1973) 415.CrossRefGoogle Scholar
  23. 23.
    A. E. Staton-Bevan andR. D. Rawlings,Phys. Status Solidi (a) 29 (1975) 613.CrossRefGoogle Scholar
  24. 24.
    Idem., Phil. Mag. 32 (1975) 787.CrossRefGoogle Scholar
  25. 25.
    I. Baker andE. M. Schulson,Phys. Status Solidi (a) 89 (1985) 163.CrossRefGoogle Scholar
  26. 26.
    A. Baldan,ibid. 75 (1983) 411.CrossRefGoogle Scholar
  27. 27.
    D. P. Pope andS. S. Ezz,Int. Metals Rev. 29 (1984) 136.Google Scholar
  28. 28.
    J. Douin, P. Veyssière andP. Beauchamp,Phil. Mag. A 54 (1986) 375.CrossRefGoogle Scholar
  29. 29.
    M. Yamaguchi, V. Paidar, D. P. Pope andV. Vitek,ibid. 45 (1982) 867.CrossRefGoogle Scholar
  30. 30.
    V. Paidar, M. Yamaguchi, D. P. Pope andV. Vitek,ibid. 45 (1982) 883.CrossRefGoogle Scholar
  31. 31.
    S. M. Ohr,Mater. Sci. Engng 72 (1985) 1.CrossRefGoogle Scholar
  32. 32.
    S. M. Ohr andJ. Narayan,Phil. Mag. 41 (1980) 81.CrossRefGoogle Scholar
  33. 33.
    S. Kobayashi andS. M. Ohr,Scripta Metall. 15 (1981) 343.CrossRefGoogle Scholar
  34. 34.
    Idem., J. Mater. Sci. 19 (1984) 2273.CrossRefGoogle Scholar
  35. 35.
    S. M. Foiles andM. S. Daw,J. Mater. Res. 2 (1987) 5.CrossRefGoogle Scholar
  36. 36.
    F. X. Kayser andC. Stassis,Phys. Status Solidi (a) 64 (1981) 335.CrossRefGoogle Scholar
  37. 37.
    S. M. Copley andB. H. Kear,Trans. AIME 239 (1967) 977.Google Scholar
  38. 38.
    U. Inman andH. Tipler,Metall. Rev. 8 (1963) 105.CrossRefGoogle Scholar
  39. 39.
    P. S. Venkatesan andD. N. Beshers,J. Appl. Phys. 41 (1970) 42.CrossRefGoogle Scholar
  40. 40.
    J. R. Rice andR. Thomson,Phil. Mag. 29 (1974) 73.CrossRefGoogle Scholar
  41. 41.
    P. Coulomb,J. Microsc. Spectrosc. Electron. 3 (1978) 295.Google Scholar
  42. 42.
    F. Prinz, H. O. K. Kirchner andG. Schoeck,Phil. Mag. 38 (1978) 321.CrossRefGoogle Scholar
  43. 43.
    B. R. Lawn andT. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, 1975).Google Scholar
  44. 44.
    J. F. Knott, “Fundamentals of Fracture Mechanics” (Wiley, New York, 1973).Google Scholar
  45. 45.
    M. H. Yoo andA. H. King,J. Mater. Res. 3 (1988) 848.CrossRefGoogle Scholar
  46. 46.
    Idem., “Symposium Proceedings on Interface Science and Engineering”, ASM World Materials Congress (27–30 September 1988), Chicago, in press.Google Scholar
  47. 47.
    E. Smith andG. T. Barnby,J. Metall. Sci. 1 (1967) 56.CrossRefGoogle Scholar
  48. 48.
    A. Ball andR. E. Smallman,Acta Metall. 14 (1966) 1517.CrossRefGoogle Scholar
  49. 49.
    M. Rudy andG. Sauthoff,Mater. Sci. Engng 81 (1986) 525.CrossRefGoogle Scholar
  50. 50.
    F. Laves,Naturwiss. 39 (1952) 546.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • R. Maurer
    • 1
  1. 1.Max-Planck Institut für MetallforschungStuttgartGermany

Personalised recommendations