Advertisement

Journal of Materials Science

, Volume 27, Issue 23, pp 6249–6273 | Cite as

Self-propagating high-temperature synthesis

  • J. Subrahmanyam
  • M. Vijayakumar
Review

Abstract

Self-propagating high-temperature synthesis (SHS) and processes based on SHS are currently being developed the world over for the production of powders and near-net shape components of advanced materials. The research activities that have been and are being carried out in this field are reviewed here. Theoretical principles underlying SHS process, such as equlibrium computation and kinetics involving heat and mass transfer are described. General concepts about the SHS reaction mechanisms with a few illustrative examples are presented. Along with a detailed description of the processing techniques such as powder production,in situ consolidation and casting, a few of the novel techniques based on SHS are also elaborated.

Keywords

Polymer Mass Transfer Reaction Mechanism Processing Technique General Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Cp

Combined heat capacity of the products

D

Diffusion coefficient,D=Do e−(E/RT)

E

Activation energy

f

Fraction melted

ΔHTor,Q

Enthalpy of the reaction at temperature,To

k

Reaction rate constant,k=k e−(E/RT)

n

Order of the reaction

pB

Partial pressure of the reactant gas B

R

Universal gas constant

S

Surface area of the solid reactant

Tad

Adiabatic temperature

To

Initial temperature

Tm

Melting point

Tb

Boiling point

v

Velocity of wave propagation

α

Thermal diffusivity

αc

Parameter delineating combustion regimes

η

Fraction converted

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Merzhanov, V. M. Shkiro andI. P. Borovinskaya, “Synthesis of refractory inorganic compounds”, of refractory compounds' (Noyes, New Jersey, USA, 1985).Google Scholar
  2. 2.
    Idem., French Pat. 2088 668 (1972).Google Scholar
  3. 3.
    Idem., US Pat. 3726 643 (1973).Google Scholar
  4. 4.
    Idem., UK Pat. 1321 084 (1974).Google Scholar
  5. 5.
    Idem.,Japan Pat. 1098 839 (1982).Google Scholar
  6. 6.
    A. G. Merzhanov andI. P. Borovinskaya,Dokl. Akad. Nauk. SSSR 204 (1972) 336.Google Scholar
  7. 7.
    J. F. Crider,Ceram. Engng Sci. Proc. 3 (1982) 519.CrossRefGoogle Scholar
  8. 8.
    W. F. Frankhouser, K. W. Brendley, M. C. Kieszek andS. T. Sullivan, ‘Gasless combustion synthesis of refractory compounds’ (Noyes, New Jersey, USA, 1985).Google Scholar
  9. 9.
    L. M. Sheppard,Adv. Mater. Proc. 2 (2) (1986) 25.Google Scholar
  10. 10.
    J. W. McCauley,Ceram. Engng Sci. Proc. 11 (1990) 1137.CrossRefGoogle Scholar
  11. 11.
    J. B. Holt,MRS Bull. 12 (1987) 60.CrossRefGoogle Scholar
  12. 12.
    Z. A. Munir,Ceram. Bull. 67 (1988) 342.Google Scholar
  13. 13.
    Z. A. Munir andV. Anselmi-Tamburini,Mater. Sci. Rep. 3 (1989) 277.CrossRefGoogle Scholar
  14. 14.
    A. G. Merzhanov, in “Combustion and Plasma Synthesis of High temperature Materials”, edited by Z. A. Munir and J. B. Holt (VCH, New York, 1990) p. 1.Google Scholar
  15. 15.
    H. C. Yi andI. J. Moore,J. Mater. Sci. 25 (1990) 1159.CrossRefGoogle Scholar
  16. 16.
    A. G. Merzhanov, in “Combustion Process in Chemical Technology and Metallury”, edited by A. G. Merzhanov (Chernogolovka, 1975) p. 1.Google Scholar
  17. 17.
    A. G. Merzhanov,Fizik. Khim. Soverem. Problem. (1983) 7.Google Scholar
  18. 18.
    I. P. Borovinskaya, A. G. Merzhanov, A. N. Pityulin andV. S. Skekht, in “Combustion Process in Chemical Technology and Metallurgy”, edited by A. G. Merzhanov (Chernogolovka, 1975) p. 113.Google Scholar
  19. 19.
    J. Subrahmanyam, M. Vijayakumar, andS. Ranganath,Met. Mater. proc. 1 (1989) 105.Google Scholar
  20. 20.
    J. B. Holt andZ. A. Munir,J. Mater. Sci. 21 (1986) 251.CrossRefGoogle Scholar
  21. 21.
    N. P. Novikov, I. P. Borovinskaya andA. G. Merzhanov, in “Combustion Process in Chemical Technology and Metallurgy”, edited by A. G. Merzhanov (Chernogolovka, 1975) p. 174.Google Scholar
  22. 22.
    F. Van Zeggeren andS. H. Storey, “The Computation of Chemical Equilibria” (Cambridge University Press, Cambridge, UK, 1970).Google Scholar
  23. 23.
    C. C. Mamyan, Yu. M. Petrov, L. K. Steceek, in “Combustion Process in Chemical Technology and Metallurgy”, edited by A. G. Merzhanov (Chernogolovka, 1975) p. 188.Google Scholar
  24. 24.
    B. I. Khaikin,ibid., p. 227.Google Scholar
  25. 25.
    S. B. Morgolis, B. J. Matkowsky andM. R. Botty, in “Combustion and Plasma Synthesis of High temperature Materials”, edited by Z. A. Munir and J. B. Holt (VCH, New York, 1990) p. 73.Google Scholar
  26. 26.
    A. Baylin andB. J. Matkowsky,ibid.in “, p. 61.Google Scholar
  27. 27.
    V. Hlavacek, P. Dimitriou, J. Degreve andJ. Scholtz,ibid.in “, p. 83.Google Scholar
  28. 28.
    R. Armstrong andM. Koszykowski,ibid.in “, p. 88.Google Scholar
  29. 29.
    V. Hlavacek, J. Puszynski, J. Degreve andS. Kumar,Chem. Engng Sci. 41 (1986) 877.CrossRefGoogle Scholar
  30. 30.
    J. Puszynski, J. Degreve andV. Hlavacek,Ind. Engng Chem. Res. 26 (1987) 1424.CrossRefGoogle Scholar
  31. 31.
    J. Rajaiah, H. Dandekar, J. Puszynski, J. Degreve andV. Hlavacek,ibid. 27 (1988) 513.CrossRefGoogle Scholar
  32. 32.
    D. I. Khaikin andA. G. Merzhanov,ibid. 2 (1966) 22.Google Scholar
  33. 33.
    C. Wagner,Z. Physik. Chem. B34 (1936) 309.Google Scholar
  34. 34.
    A. P. Hardt andP. V. Phung,Combust Flame 21 (1973) 77.CrossRefGoogle Scholar
  35. 35.
    W. Jander,Z. Anorg. Allg. Chem. 163 (1927) 1.CrossRefGoogle Scholar
  36. 36.
    R. E. Carter,J. Chem. Phys. 34 (1961) 2010.CrossRefGoogle Scholar
  37. 37.
    Idem., ibid. 35 (1961) 1137.CrossRefGoogle Scholar
  38. 38.
    H. Schmalzried, in “Treatise an Solid State Chemistry”, Vol. 4, “Reactivity of Solids”, edited by N. B. Hannay (Plenum Press, New York, 1976) p. 233.Google Scholar
  39. 39.
    A. W. D. Hills, in “Heterogeneous Kinetics at Elevated Temperatures”, edited by G. R. Belton and W. L. Worrel (Plenum Press, New York, 1970) p. 449.CrossRefGoogle Scholar
  40. 40.
    R. Pampuch, J. Lis andL. Stobierski, in “Science of Ceramics 14”, edited by D. Taylor (The Institute of Ceramics, Shelton, Stoke-on-trent, Staffs., UK, 1988) p. 15.Google Scholar
  41. 41.
    A. A. Zenin, A. G. Merzhanov, G. A. Nersisyan,Combust. Explos. Shock Waves USSR 17(1) (1981) 63.CrossRefGoogle Scholar
  42. 42.
    F. G. Shkadinski, B. I. Khaikin andA. G. Merzhanov,ibid. 7 (1971) 15.CrossRefGoogle Scholar
  43. 43.
    V. M. Shkiro, G. A. Nersisyan andI. P. Borovinskaya,ibid. 14 (1978) 455.CrossRefGoogle Scholar
  44. 44.
    A. R. Serkisyan, S. K. Dolukhanyan, I. P. Borovinskaya andA. G. Merzhanov,ibid. 14 (1978) 310.CrossRefGoogle Scholar
  45. 45.
    A. R. Serkisyan, S. K. Dolukhanyan andI. P. Borovinskaya,Sov. Powd. Met. Met. Cer. 17 (1978) 424.CrossRefGoogle Scholar
  46. 46.
    G. Hagg,Z. Phys. Chem. B12 (1931) 33.Google Scholar
  47. 47.
    Idem., ibid. B11 (1930) 433.Google Scholar
  48. 48.
    A. Westgren,J. Franklin Inst. 212 (1931) 577.CrossRefGoogle Scholar
  49. 49.
    S. G. Vadchenko, Y. M. Grigorev andA. G. Merzhanov,Combust. Explos. Shock Waves USSR 12 (1976) 606.CrossRefGoogle Scholar
  50. 50.
    V. A. Knyazik, A. G. Merzhanov, V. V. Solomonov andK. S. Shteinberg,ibid. 21 (1985) 333.CrossRefGoogle Scholar
  51. 51.
    A. S. Rogachev, A. S. Mukasyan andA. G. Merzhanov,Dokl. Phys. Chem. 297 (1987) 1240.Google Scholar
  52. 52.
    E. A. Nekrasov, Y. M. Maksimov, M. K. Ziatdilov andA. S. Shteinberg,ibid. 14 (1978) 575.Google Scholar
  53. 53.
    A. I. Kirbyashkin, I. M. Moksimov andA. G. Merzhanov,ibid. 17 (1982) 191.Google Scholar
  54. 54.
    T. S. Azatyan, V. M. Maltsev, A. G. Merzhanov andV. A. Seleznev,ibid. 13 (1977) 156.Google Scholar
  55. 55.
    V. M. Shkiro andI. P. Borovinskaya, in “Combustion Process in Chemical Technology and Metallurgy”, edited by A. G. Merzhanov, (Chernogolovka, 1975) p. 253.Google Scholar
  56. 56.
    V. M. Shkiro, V. N. Doroshin andI. P. Borovinskaya,Combust. Explos. shock Waves USSR 16 (1981) 370.CrossRefGoogle Scholar
  57. 57.
    Y. S. Naiberdenko, V. I. Itin, A. G. Merzhanov, I. P. Borovinskaya, V. P. Ushakov andV. M. Maslov,Sov. Phys. J. 6 (1975) 872.Google Scholar
  58. 58.
    Y. S. Naiberdenko andV. I. Itin,Combust. Explos. Shock Waves USSR 11 (1975) 293.CrossRefGoogle Scholar
  59. 59.
    V. M. Maslov, I. P. Borovinskaya andA. G. Merzhanov,ibid. 12 (1976) 31.CrossRefGoogle Scholar
  60. 60.
    Y. S. Naiberdenko andV. I. Itin,ibid. 11 (1975) 626.CrossRefGoogle Scholar
  61. 61.
    B. V. Boldyrev, V. V. Aleksandrov, M. A. Korchagin, B. P. Tolochko, S. N. Gusko, A. S. Solokov, M. A. Sheromov andN. Z. Lyakhov,Dokl. Akad. Nauk SSSR 259 (1981) 1127.Google Scholar
  62. 62.
    V. V. Aleksandrov, M. A. Korchagin, B. P. Tolochko andM. A. Sheromov,Combust. Explos. Shock Waves USSR 19 (1984) 430.CrossRefGoogle Scholar
  63. 63.
    K. A. Philpot, Z. A. Munir andJ. B. Holt,J. Mater. Sci. 22 (1987) 159.CrossRefGoogle Scholar
  64. 64.
    Y. S. Naibordenko, V. I. Itin, B. P. Belozerov andV. P. Ushakov,Sov. Phys. J. 16 (1973) 1507.CrossRefGoogle Scholar
  65. 65.
    I. P. Borovinskaya andV. E. Loryan,Sov. Powd. Met. Met. Ceram. 17 (1978) 851.CrossRefGoogle Scholar
  66. 66.
    Z. A. Munir andJ. B. Holt,J. Mater. Sci. 22 (1987) 710.CrossRefGoogle Scholar
  67. 67.
    A. G. Merzhanov, I. P. Borovinskaya andY. E. Volodin,Dokl. Phys. Chem. 206 (1973) 833.Google Scholar
  68. 68.
    M. Eslaomloo-Grami andZ. A. Munir,J. Amer. Ceram. Soc. 73 (1990) 1235.CrossRefGoogle Scholar
  69. 69.
    A. N. Pityulin, V. A. Sheherbakov, I. P. Borovinskaya andA. G. Merzhanov,Combust. Explos. Shock Waves USSR 15 (1979) 432.CrossRefGoogle Scholar
  70. 70.
    A. G. Strunina, T. M. Martem'yanove, V. V. Barzykin andV. I. Ermakov,ibid. 10 (1974) 449.CrossRefGoogle Scholar
  71. 71.
    P. V. Phung andA. P. Hardt,Combust. Flame 22 (1974) 323.CrossRefGoogle Scholar
  72. 72.
    I. I. Korotkevich, G. V. Khil'chenko, G. P. Polunina andL. M. Vidavskii,Combust. Explos. Shock Waves USSR 17 (1981) 61.Google Scholar
  73. 73.
    N. A. Martirosyan, S. K. Dolukhanyan, I. P. Borovinskaya andA. G. Merzhanov,Sov. Powd. Met. Met. Ceram. 16 (1977) 522.Google Scholar
  74. 74.
    Pamphlets from Licensintorg, Moscow, RussiaGoogle Scholar
  75. 75.
    R. W. Rice andW. J. McDonough,J. Amer. Ceram. Soc. 68 (1985) c-122.CrossRefGoogle Scholar
  76. 76.
    K. A. Gabriel andJ. R. Alexander, in “Material Processing by Self-propagating High-temperature Synthesis (SHS)”, edited by K. Gabriel, S. Wah and J. W. McCauley, MTL SP87-3, DARPA/Army Symposium Proceedings October 1985, p. 441.Google Scholar
  77. 77.
    A. G. Merzhanov et al., USSR Pat. 584 052 (1975).Google Scholar
  78. 78.
    G. Y. Richardson, R. W. Rice andW. J. McDonough,Ceram. Engng Sci. Proc. 7 (1986) 761.CrossRefGoogle Scholar
  79. 79.
    C. P. Cameron, J. H. Enloe, L. E. Dolhert andR. W. Rice,ibid. 11 (1990) 1190.CrossRefGoogle Scholar
  80. 80.
    R. W. Rice,ibid. 11 (1990) 1126.Google Scholar
  81. 81.
    L. J. Kecskes, T. Kohke andA. Niiler,J. Amer. Ceram. Soc. 73 (1990) 1274.CrossRefGoogle Scholar
  82. 82.
    L. J. Kecskes, R. F. Benck andP. H. Netherwood Jr,ibid. 73 (1990) 383.CrossRefGoogle Scholar
  83. 83.
    Y. Miyamoto, M. Koizumi andO. Yamada,J. Amer. Ceram. Soc. 67 (1984) c-224CrossRefGoogle Scholar
  84. 84.
    O. Yamada, Y. Miyamoto andM. Koizumi,Amer. Ceram. Soc. Bull. 64 (1985) 319.Google Scholar
  85. 85.
    S. Adachi, T. Wada, T. Mihara, Y. Miyamoto, M. Koizumi andO. Yamada,J. Amer. Ceram. Soc. 72 (1989) 805.CrossRefGoogle Scholar
  86. 86.
    S. Adachi, T. Wada, T. Mihara, Y. Miyamoto andM. Koizumi,J. Amer. Ceram. Soc. 73 (1990) 1451.CrossRefGoogle Scholar
  87. 87.
    Y. Miyamoto,Amer. Ceram. Soc. Bull. 69 (1990) 686.Google Scholar
  88. 88.
    R. W. Rice, W. J. McDonough, G. Y. Richardson, J. M. Kunutz andT. Schroeter,Ceram. Engng Sci. Proc. 7 (1986) 751.CrossRefGoogle Scholar
  89. 89.
    R. W. Rice,ibid. 11 (1990) 1203.CrossRefGoogle Scholar
  90. 90.
    J. Subrahmanyam, unpublished.Google Scholar
  91. 91.
    H. J. Frost andM. F. Ashby, “Deformation Mechanism Maps” (Pergamon Press, 1982) p. 90.Google Scholar
  92. 92.
    J. A. Puszynski, S. Majorowski andV. Hlavacek,Ceram. Engng Sci. Proc. 11 (1990) 1182.CrossRefGoogle Scholar
  93. 93.
    G. E. Dieter, in “Metals Handbook, 9th Edn, Vol. 14 (ASM International, Ohio, USA, 1988) pp. 363, 373.Google Scholar
  94. 94.
    S. I. Oh,Int. J. Mech. Sci. 17 (1982) 293.CrossRefGoogle Scholar
  95. 95.
    A. G. Merzhanov, V. I. Jukhvid, I. P. Borovinskaya andF. I. Dobovitsky, UK Pat. 1497 025 (1978).Google Scholar
  96. 96.
    O. Odawara, US Pat. 4363 832 (1982).Google Scholar
  97. 97.
    O. Odawara andJ. Ikeuchi,J. Jpn Inst. Metals Sendai 45 (1981) 316.CrossRefGoogle Scholar
  98. 98.
    Idem., J. Amer. Ceram. Soc. 69 (1986) c-85.Google Scholar
  99. 99.
    O. Odawara,ibid. 73 (1990) 629.CrossRefGoogle Scholar
  100. 100.
    O. Odawara, in “MRS International Meet on Advanced Materials”, Vol. 4 (Eds. M. Doyama, S. Somiya, R. P. H. Chang, Publ. Materials Research Society, Pittsburgh, Penn., USA, 1989) p. 535.Google Scholar
  101. 101.
    G. B. Schafer andP. G. McCormik,Scripta Metall. 23 (1989) 835.CrossRefGoogle Scholar
  102. 102.
    P. G. McCormik, private communication 1990.Google Scholar
  103. 103.
    N. Sata, K. Nagata, N. Sanada, T. Hirano andM. Niino, in “MRS International Meet on Advanced Materials”, Vol. 4 (Eds. M. Doyama, S. Somiya, R. P. H. Chang, Publ. Materials Research Society, Pittsburgh, Penn., USA, 1989) 541.Google Scholar
  104. 104.
    L. Christodoulou, D. C. Nagle andBrupbacher, Int. Pat. wo86/06366 (1986).Google Scholar
  105. 105.
    A. K. Kuruvilla, K. S. Prasad, V. V. Bhanuprasad andY. R. Mahajan,Scripta Metall. 24 (1990) 873.CrossRefGoogle Scholar
  106. 106.
    S. Ranganath, M. Vijayakumar andJ. Subrahmanyam,Mat. Sci. & Engg., A149 (1992) 253CrossRefGoogle Scholar
  107. 107.
    J. J. Kingsley, N. Manickam andK. C. Patil,Bull. Mater. Sci. 13 (1990) 179.CrossRefGoogle Scholar
  108. 108.
    M. M. A. Sekhar, S. S. Manoharan andK. C. Patil,J. Mater. Sci. Lett. 9 (1990) 1205.CrossRefGoogle Scholar
  109. 109.
    R. Gopichandran andK. C. Patil,Mater. Lett. 10 (1990) 291.CrossRefGoogle Scholar
  110. 110.
    R. Gopalan, Y. S. N. Murthy, T. Rajasekharan, S. Ravi andV. Seshubai,ibid. 8 (1989) 441.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. Subrahmanyam
    • 1
  • M. Vijayakumar
    • 1
  1. 1.Defence Metallurgical Research LaboratoryCombustion Synthesis GroupHyderabadIndia

Personalised recommendations