Advertisement

Journal of Materials Science

, Volume 28, Issue 19, pp 5340–5344 | Cite as

Study of elastic-plastic fracture toughness determination

  • J. Fernández-Sáez
  • J. Chao
  • J. Durán
  • J. M. Amo
Papers

Abstract

The elastic-plastic fracture toughness viaJ-integral and crack tip opening displacement (CTOD) has been obtained in two structural steels using several fitting equations representing the resistance curve of the material. The toughness is determined as the values corresponding to the critical stretched zone width (SZW) on theR-curves and with respect to 0.2 mm crack growth. The SZW measurements were performed by scanning electron microscopy. The various toughness values have been compared and the importance of using appropriateR-curves based on physical considerations has been pointed out. TheJ-CTOD relationship during the blunting process has been experimentally investigated from load-displacement records of the fracture test.

Keywords

Polymer Microscopy Electron Microscopy Scanning Electron Microscopy Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Begley andJ. D. Landes, in “Fracture Toughness”, ASTM STP 514 (American Society for Testing and Materials, Philadelphia, PA, 1974) p. 170.Google Scholar
  2. 2.
    J. F. Knott, “Fundamentals of Fracture Mechanics” (Butterworths, London, 1973).Google Scholar
  3. 3.
    “Standard Test Method forJ IC, A Measure of Fracture Toughness”, ASTM E813-87 (American Society for Testing and Materials, Philadelphia, PA, 1987).Google Scholar
  4. 4.
    “EGF Recommendations for Determining the Fracture Resistance of Ductile Materials”, EGF p 1-90. European Group on Fracture (December, 1989).Google Scholar
  5. 5.
    J. Mills,J. Test. Eval. JTEVA 9 (1981) 56.CrossRefGoogle Scholar
  6. 6.
    K. H. Schwalbe,Int. J. Fract. 9 (1973) 381.Google Scholar
  7. 7.
    O. Kolednik andH. P. Stuwe,ibid. 33 (1987) R63.CrossRefGoogle Scholar
  8. 8.
    R. Moskovic andP. L. Windle,Eng. Fract. Mech. 31 (1988) 221.CrossRefGoogle Scholar
  9. 9.
    R. K. Pandey, A. N. Kumar andP. Sundaram,J. Mater. Sci. 26 (1991) 6237.CrossRefGoogle Scholar
  10. 10.
    R. K. Pandey, P. Sundaram andA. N. Kumar,Int. J. Fract. 47 (1991) R29.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • J. Fernández-Sáez
    • 1
  • J. Chao
    • 1
  • J. Durán
    • 1
  • J. M. Amo
    • 1
  1. 1.Centro Nacional de Investigaciones MetalúrgicasMadridSpain

Personalised recommendations