Journal of Materials Science

, Volume 28, Issue 19, pp 5325–5329 | Cite as

Relationship between work-hardening exponent and load dependence of Vickers hardness in copper

  • K. Shinohara


Micro-Vickers hardness measurements were conducted on pure copper under cold-worked and annealed conditions at loads ranging 0.147 to 9.8 N as well as tensile tests. Characteristics of the load dependence of the Vickers hardness (Hv) of these specimens were compared with the work-hardening exponents,n, obtained through tensile tests. There was a trend that the slope of the load dependence of the hardness was larger in copper with a smallern. The slope,S, was a good measure for correlating withn, andn could be expressed asn=−0.293/S. The 0.2% offset stress σ0.2 and ultimate tensile stress σUTS were estimated by usingn determined from theS-n relation and the relations of Cahoonet al. and Tabor. The estimated σ0.2 and σUTS showed good coincidence with those obtained from tensile tests.


Polymer Copper Tensile Test Tensile Stress Annealed Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Tabor, “The Hardness of Metals” (Clarendon Press, Oxford, 1951) p. 1.Google Scholar
  2. 2.
    G. E. Lucas,J. Nucl. Mater. 117 (1983) 327.CrossRefGoogle Scholar
  3. 3.
    K. Shinohara, G. E. Lucas andG. R. Odette,ibid. 133–134 (1985) 326.CrossRefGoogle Scholar
  4. 4.
    J. R. Cahoon, W. H. Broughton andA. R. Kutzak,Metall. Trans. 2 (1971) 1979.Google Scholar
  5. 5.
    S. J. Zinkle andW. C. Oliver,J. Nucl. Mater. 141–143 (1986) 548.CrossRefGoogle Scholar
  6. 6.
    D. H. Plantz, L. M. Wang, R. A. Dodd andG. L. Kulcinski,Metall. Trans. 20A (1989) 2681.CrossRefGoogle Scholar
  7. 7.
    K. Shinohara, M. Yasuda, K. Yasuda andM. Kutsuwada,J. Nucl. Mater. 182 (1991) 145.CrossRefGoogle Scholar
  8. 8.
    H. Buckle,Metall. Rev. 4 (1959) 49.CrossRefGoogle Scholar
  9. 9.
    F. H. Vivotec, in ASTM STP 889 (American Society for Testing and Materials, Philadelphia, 1985) p. 175.Google Scholar
  10. 10.
    R. M. Westrich, in ASTM STP 889 (American Society for Testing and Materials, Philadelphia, 1985) p. 196.Google Scholar
  11. 11.
    P. J. Blau, in ASTM STP 889 (American Society for Testing and Materials, Philadelphia, 1985) p. 209.Google Scholar
  12. 12.
    A. Atkinson andH. Shi,Mater. Sci. Technol. 5 (1989) 613.CrossRefGoogle Scholar
  13. 13.
    H. Shi andA. Atkinson,J. Mater. Sci. 25 (1990) 2111.CrossRefGoogle Scholar
  14. 14.
    M. O. Lai andK. B. Lim,ibid. 26 (1991) 2031.CrossRefGoogle Scholar
  15. 15.
    K. Yasuda, K. Shinohara, M. Yamada, M. Kutsuwada andC. Kinoshita,J. Nucl. Mater. 187 (1992) 109.CrossRefGoogle Scholar
  16. 16.
    G. E. Dieter, “Mechanical Metallurgy” (McGraw-Hill, New York, 1986) p. 325.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • K. Shinohara
    • 1
  1. 1.Department of Mechanical EngineeringKumamoto Institute of TechnologyKumamotoJapan

Personalised recommendations