Journal of Materials Science

, Volume 28, Issue 19, pp 5301–5312 | Cite as

Mechanism and kinetics of the chemical interaction between liquid aluminium and silicon-carbide single crystals

  • J. C. Viala
  • F. Bosselet
  • V. Laurent
  • Y. Lepetitcorps


Previous investigations of phase equilibria in the ternary system Al-C-Si have shown that silicon carbide is attacked by pure aluminium at temperatures higher or equal to 923±3 K and up to about 1600 K, according to the chemical reaction: 4Al+3SiC ↔ Al4C3+3Si In the present work, a study has been carried out to obtain more detailed information on the mechanism and kinetics of this reaction. For that purpose, 6H silicon carbide platelets with broad Si (0 0 0 1) and C (0 0 0 ¯1) faces were isothermally heated at 1000 K in a large excess of liquid aluminium. Characterization of the resulting samples by Auger electron spectroscopy (AES) and scanning electron microscopy (SEM) revealed that the reaction proceeds in both faces via a dissolution-precipitation mechanism. However, the polarity of the substrate surface strikingly influences the rate at which silicon carbide decomposes: dissolution starts much more rapidly on the Si face than on the C face, but, while a barrier layer of aluminium carbide is formed on the Si face protecting it against further attack, the major part of the C face remains directly exposed to liquid aluminium and thus may continue to dissolve at a low but constant rate up to complete decomposition of the α-SiC crystal.


Carbide Auger Silicon Carbide Ternary System Barrier Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Bermudez,Appl. Phys. Lett. 42 (1983) 70.CrossRefGoogle Scholar
  2. 2.
    T. Iseki, T. Maruyama andT. Kameda,J. Mater. Sci. 34 (1984) 241.Google Scholar
  3. 3.
    E. Nakata, K. Sato andY. Kagawa,J. Mater. Sci. Lett. 3 (1984) 611.CrossRefGoogle Scholar
  4. 4.
    R. J. Arsenault andC. S. Pande,Scripta Metall. 18 (1984) 1131.CrossRefGoogle Scholar
  5. 5.
    J. C. Viala, P. Fortier, C. Bernard andJ. Bouix,C. R. Acad. Sci. Paris, Ser. 2299 (1984) 777.Google Scholar
  6. 6.
    S. R. Nutt andF. E. Wawner,J. Mater. Sci. 20 (1985) 1953.CrossRefGoogle Scholar
  7. 7.
    T. G. Nieh, J. Wadsworth andD. J. Chellmann,Scripta Metall. 19 (1985) 181.CrossRefGoogle Scholar
  8. 8.
    L. Porte,J. Appl. Phys. 60 (1986) 635.CrossRefGoogle Scholar
  9. 9.
    J. C. Viala, P. Fortier, B. Bonnetot andJ. Bouix,Mater. Res. Bull. 21 (1986) 387.CrossRefGoogle Scholar
  10. 10.
    T. A. Chernyshova andA. V. Rebrov,J. Less-Common Metals 117 (1986) 203.CrossRefGoogle Scholar
  11. 11.
    K. Kannikeswaran andR. Y. Lin,J. Metals 39 (1987) 17.Google Scholar
  12. 12.
    V. M. Bermudez,J. Appl. Phys. 63 (1988) 4951.CrossRefGoogle Scholar
  13. 13.
    D. J. Lee, M. D. Vaudin, C. A. Handwerker andKattner,Mater. Res. Soc. Symp. Proc. 120 (1988) 357.CrossRefGoogle Scholar
  14. 14.
    D. J. Lloyd, H. Lagace, A. Mcleod andP. L. Morris,Mater. Sci. Engng. A 107 (1989) 73.CrossRefGoogle Scholar
  15. 15.
    L. L. Oden andR. A. Mccune,Metal. Trans. A 18 (1987) 2005.CrossRefGoogle Scholar
  16. 16.
    H. L. Lukas in “Ternary alloys”, edited byG. Petzow andG. Effenberg (VCH Verlags, Weinheim, FRG, 1988) p. 540.Google Scholar
  17. 17.
    J. C. Viala, P. Fortier andJ. Bouix,J. Mater. Sci. 25 (1990) 1842.CrossRefGoogle Scholar
  18. 18.
    R. Muehlhoff, W. J. Choyke, M. J. Bosack andJ. T. Yates,J. Appl. Phys. 60 (1986) 2842.CrossRefGoogle Scholar
  19. 19.
    R. C. A. Harris,J. Amer. Ceram. Soc. 58 (1975) 7.CrossRefGoogle Scholar
  20. 20.
    J. A. Costello andR. E. Tressler,J. Amer. Ceram. Soc. 69 (1986) 674.CrossRefGoogle Scholar
  21. 21.
    V. Laurent, D. Chatain andN. Eustathopoulos,J. Mater. Sci. 22 (1987) 244.CrossRefGoogle Scholar
  22. 22.
    V. Laurent, Thesis, INPG, Grenoble, France, 4 November (1988).Google Scholar
  23. 23.
    S. D. Peteves, P. Tambuyser, P. Helbach, M. Audier, V. Laurent andD. Chatain,J. Mater. Sci. 25 (1990) 3765.CrossRefGoogle Scholar
  24. 24.
    C. J. Simensen,Metall. Trans. A 20 (1989) 191.CrossRefGoogle Scholar
  25. 25.
    S. Nishino, H. Matsunami andT. Tanaka,J. Crystal Growth 45 (1978) 144.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • J. C. Viala
    • 1
  • F. Bosselet
    • 1
  • V. Laurent
    • 2
  • Y. Lepetitcorps
    • 3
  1. 1.Laboratoire de Physico-chimie Minérale 1URA CNRS 116, Université Claude Bernard Lyon 1Villeurbanne CedexFrance
  2. 2.Laboratoire de Thermodynamique et Physico-chimie MétallurgiquesURA CNRS 29, ENSEEGSaint Martin D'Hères CedexFrance
  3. 3.Laboratoire de Chimie du solide du CNRSUniversité Bordeaux 1Talence CedexFrance

Personalised recommendations