Advertisement

Journal of Materials Science

, Volume 28, Issue 19, pp 5280–5296 | Cite as

Debond coating requirements for brittle matrix composites

  • M. L. Emiliaini
Papers

Abstract

The cause of improved fracture toughness in Y2O3-coated niobium-toughened TiAl relative to either uncoated niobium or Al2O3-coated niobium was examined. Reactively sputtered Y2O3 coatings, 1–2 μm thick, were deposited on to rock salt (NaCl), polished single-crystal (0001) Al2O3, and polished polycrystalline niobium. Sputtered niobium coatings, 1–2 μm thick, were also deposited on to polished single-crystal Y2O3 substrates for comparison. The oxide coating was characterized and consisted of stoichiometric bcc Y2O3 witha0=1.0602 nm. Indentation tests were performed to correlate the fracture toughness and debond characteristics of as-deposited Y2O3 coatings on Al2O3 and polycrystalline niobium, and niobium coatings on single-crystal Y2O3, to that found in TiAl/Nb and Al2O3/Al2O3 laminates. The calculated fracture toughness of sputtered Y2O3 on sapphire was similar to reported values for bulk Y2O3. However, a wide variation in interfacial fracture toughness was obtained by indentation methods, and is attributed to the microstructure of as-deposited coatings and to weak bonding between as-deposited yttria and the sapphire substrate. These results are related to factors that affect debonding and fracture toughness of brittle matrix composites. Reactive and non-reactive metal/ceramic systems were reviewed in an effort to understand why Y2O3 coatings perform well. It is postulated that yttrium oxide coatings applied to niobium have an atomically sharp interface that has a lower fracture energy compared to Nb/Al2O3, resulting in improved interfacial debonding and composite fracture toughness.

Keywords

Fracture Toughness Niobium Y2O3 Rock Salt Yttrium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Evans andD. B. Marshall,Acta Metall. 37 (1989) 2567.CrossRefGoogle Scholar
  2. 2.
    H. C. Cao, E. Bischoff, O. Sbaizero, M. Rühle, A. G. Evans, D. B. Marshall andJ. J. Brennan,J. Am. Ceram. Soc. 73 (1990) 1691.CrossRefGoogle Scholar
  3. 3.
    V. Gupta, A. S. Argon andJ. A. Cornie,J. Mater. Sci. 24 (1989) 2031.CrossRefGoogle Scholar
  4. 4.
    M. Basche, R. Fanti andF. Galasso,Fiber Sci. Technol. 1 (1968) 19.CrossRefGoogle Scholar
  5. 5.
    F. Wawner, A. Y. Teng andS. R. Nutt,SAMPE Q. 14 (1983) 39.Google Scholar
  6. 6.
    H. Déve, A. G. Evans, G. R. Odette, R. Mehrabian, M. L. Emiliani andR. J. Hecht,Acta Metall. Mater. 38 (1990) 1491.CrossRefGoogle Scholar
  7. 7.
    J. Davis, H. C. Cao, G. Bao andA. G. Evans,ibid. 39 (1991) 1019.CrossRefGoogle Scholar
  8. 8.
    A. G. Evans, A. Bartlett, J. B. Davis, B. D. Flinn, M. Turner andI. E. Reimanis,Scripta Metall. Mater. 25 (1991) 1003.CrossRefGoogle Scholar
  9. 9.
    W. Mader andM. Rühle,Acta Metall. 37 (1989) 853.CrossRefGoogle Scholar
  10. 10.
    L. G. Rosenfeld, J. E. Ritter andT. J. Lardner, “Interfaces in Composites”, Materials Research Society Symposium Proceedings, Vol. 170 (Materials Research Society, Pittsburgh, PA, 1990) p. 11–16.Google Scholar
  11. 11.
    T. B. Massalski, (Ed.), “Binary Alloy Phase Diagrams”, Vol. 2 (American Society for Metals, Metals Park, OH, 1986) p. 1799.Google Scholar
  12. 12.
    M. Abouelleil, L. Conopask, W. Nighan, W. Roman andD. Price,Ceram. Trans. 15 (1990) 457.Google Scholar
  13. 13.
    C. B. Ponton andR. D. Rawlings,Mater. Sci. Technol. 5 (1989) 961.CrossRefGoogle Scholar
  14. 14.
    Idem, ibid. 5 (1989) 865.CrossRefGoogle Scholar
  15. 15.
    S. Chaing, D. Marshall andA. Evans, in “Surfaces and Interface of Ceramics and Ceramic/Metal Systems”, edited by J. Pask and A. Evans, (Plenum Press, New York, 1981) pp. 603–17.CrossRefGoogle Scholar
  16. 16.
    R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, (Wiley, New York, 1976) pp. 255–96.Google Scholar
  17. 17.
    B. A. Movchan andA. V. Demshichin,Phys. Met. Metall. 28 (1969) 83.Google Scholar
  18. 18.
    J. A. Thornton,Ann. Rev. Mater. Sci. 7 (1977) 239.CrossRefGoogle Scholar
  19. 19.
    P. Sargent, in “Microhardness Techniques in Materials Science and Engineering”, edited by P. Blau and R. Lawn, ASTM STP 889 (American Society for Testing and Materials, Philadelphia, PA, 1986) pp. 160–74.Google Scholar
  20. 20.
    G. Fantozzi, G. Orange, K. Liang andE. Gillet,J. Am. Ceram. Soc. 72 (1989) 1562.CrossRefGoogle Scholar
  21. 21.
    P. J. Burnett andD. S. Rickerby,Thin Solid Films 148 (1987) 51.CrossRefGoogle Scholar
  22. 22.
    R. Cook, M. Pascucci, andH. Rhodes,J. Am. Ceram. Soc. 73 (1990) 1873.CrossRefGoogle Scholar
  23. 23.
    J. Haggerty, “Production of Fibers by a Floating Zone Fiber Drawing Technique”, Final Report, NASA Report CR-120984, May 1972, p. 52.Google Scholar
  24. 24.
    H. Baker (ed.), “Metals Handbook”, Vol. 2, 9th Edn (ASM International, Metals Park, OH, 1979) p. 779.Google Scholar
  25. 25.
    Idem, “Metals Handbook”, Vol. 2, 10th Edn (ASM International, Metals Park, OH, 1990) pp. 567–68.Google Scholar
  26. 26.
    B. Lawn, A. Evans andD. Marshall,J. Am. Ceram. Soc. 63 (1980) 574.CrossRefGoogle Scholar
  27. 27.
    P. M. Fabis,J. Vac. Sci. Technol. A5 (1987) 75.CrossRefGoogle Scholar
  28. 28.
    M. Emiliani, M. Richman andR. Brown,J. Mater. Sci. 25 (1990) 137.CrossRefGoogle Scholar
  29. 29.
    Idem, ibid. 25 (1990) 144.CrossRefGoogle Scholar
  30. 30.
    R. Birringer,Mater. Sci. Eng. A117 (1989) 33.CrossRefGoogle Scholar
  31. 31.
    D. J. Srolovitz,J. Vac. Sci. Technol. A 6 (1986) 2925.CrossRefGoogle Scholar
  32. 32.
    M. Kuwabara, J. C. H. Spence andM. Rühle,J. Mater. Res. 4 (1989) 972.CrossRefGoogle Scholar
  33. 33.
    F. S. Ohuchi,J. Mater. Sci. Lett. 8 (1989) 1427.CrossRefGoogle Scholar
  34. 34.
    J. Kennedy andG. Geschwind, in “Titanium Science and Technology”, Vol. 4, edited by R. I. Jaffee and H. M. Burte (Plenum Press, New York, 1973) p. 2299.Google Scholar
  35. 35.
    J. H. Selverian, M. Bortz, F. S. Ohuchi andM. R. Notis, in “Electronic Packaging Materials Science III”, edited by R. Jaccodine, K. A. Jackson and R. C. Sundahl, Materials Research Society Symposium Proceedings, Vol. 108 (Materials Research Society, Pittsburgh, PA, 1988) p. 107.Google Scholar
  36. 36.
    M. Bortz andF. S. Ohuchi,J. Appl. Phys. 64 (1988) 2054.CrossRefGoogle Scholar
  37. 37.
    S. Morozumi, M. Kikuchi andT. Nishino,J. Mater. Sci. 16 (1981) 2137.CrossRefGoogle Scholar
  38. 38.
    Y. Ishida, H. Ichinose, J. Wang andT. Suga, in “Proceedings of the 46th Annual Meeting of EMSA”, edited by G. W. Bailey (San Francisco Press Inc., San Francisco, CA, 1988) p. 728.Google Scholar
  39. 39.
    R. Naslain, O. Dugne, A. Guette, J. Sevely, C. R. Brosse, J -P. Rocher andJ. Cotteret,J. Am. Ceram. Soc. 74 (1991) 2482.CrossRefGoogle Scholar
  40. 40.
    H. E. Dève andM. J. Maloney,Acta Metall. Mater. 39 (1991) 2275.CrossRefGoogle Scholar
  41. 41.
    R. C. Weast (Ed.), “CRC Handbook of Chemistry and Physics”, 68th Edn (CRC, Boca Raton, FL, 1987) p. D-51 and D-92.Google Scholar
  42. 42.
    J. A. Thornton, in “Deposition Technologies for Thin Films and Coatings”, edited by R. F. Bunshah (Noyes, Park Ridge, NJ, 1982) pp. 170–243.Google Scholar
  43. 43.
    M. F. Ashby andD. R. H. Jones, “Engineering Materials” (Pergamon Press, New York, 1980) Chs 3 and 4.Google Scholar
  44. 44.
    M. L. Scott, in “Laser-Induced Damage in Optical Materials”, NBS Special Publication 688, November 1985.Google Scholar
  45. 45.
    R. W. Hoffman, in “Thin Films: Stresses and Mechanical Properties”, Materials Research Society Symposium Proceedings, Vol. 130, edited by J. D. Bravman, W. D. Nix, D. M. Barnett and D. A. Smith (Materials Research Society, Pittsburgh, PA, 1989) p. 87–92.Google Scholar
  46. 46.
    T. P. Weihs, S. Hong, J. C. Bravman andW. D. Nix,ibid.in “ p. 295–306.Google Scholar
  47. 47.
    J. D. Horner, in “Testing of Metallic and Inorganic Coatings”, edited by W. B. Harding and G. A. Bari, ASTM STP 947 (American Society for Testing and Materials, Philadelphia, PA, 1987) p. 96.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • M. L. Emiliaini
    • 1
  1. 1.Materials EngineeringPratt and WhitneyWest Palm BeachUSA

Personalised recommendations