Journal of Materials Science

, Volume 28, Issue 19, pp 5275–5279 | Cite as

Processing maps for hot working of Cu-Ni-Zn alloys

Part II α-β nickel silver
  • D. Padmavardhani
  • Y. V. R. K. Prasad


The constitutive behaviour of α-β nickel silver in the temperature range 600–850 °C and strainrate range 0.001–100s−1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, α-β nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s−1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s−1. In the domain, the α phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the β phase deforms superplastically. Optimum conditions for the processing of α-β nickel silver are 850 °C and 0.1 s−1. The material undergoes unstable flow at strain rates of 10 and 100 s−1 and in the temperature range 600–750 °C, manifestated in the form of adiabatic shear bands.


Nickel Recrystallization Shear Band Material Model Power Dissipation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Padmavardhani andY. V. R. K. Prasad,Metall. Trans. 22A (1991) 2996.Google Scholar
  2. 2.
    Idem, J. Mater. Sci.28 (1993) 0000CrossRefGoogle Scholar
  3. 3.
    K. J. Anusavice andR. T. Dehoff,Metall. Trans. 3A (1972) 1279.CrossRefGoogle Scholar
  4. 4.
    R. D. Schelleng andG. H. Reynolds,ibid. 4A (1973) 2199.Google Scholar
  5. 5.
    D. W. Livesey andN. Ridley,ibid. 9A (1978) 519.Google Scholar
  6. 6.
    Idem, ibid. 13A (1982) 1619.Google Scholar
  7. 7.
    D. W. Livesey andN. Ridley,Metall. Sci. 16 (1982) 563.CrossRefGoogle Scholar
  8. 8.
    Idem, J. Mater. Sci. 19 (1984) 3602.CrossRefGoogle Scholar
  9. 9.
    M. Cook,J. Inst. Metals 66 (1) (1938) 139.Google Scholar
  10. 10.
    D. M. Ward andB. J. Helliwell,ibid. 98 (1970) 98.Google Scholar
  11. 11.
    Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark andD. R. Barker,Metall. Trans. 15A (1984) 1883.CrossRefGoogle Scholar
  12. 12.
    H. L. Gegel, J. C. Malas, S. M. Doraivelu, V. A. Shende, in “Metals Handbook”, 9th Edn, Vol. 14 (ASM International, Metals Park, OH, 1987) p. 417.Google Scholar
  13. 13.
    J. M. Alexander, in “Modelling of Hot Deformation of Steels”, edited by J. G. Lenard (Springer, Berlin, 1989) p. 101.CrossRefGoogle Scholar
  14. 14.
    A. K. S. Kalyan Kumar, MSc (Engng) thesis, Indian Institute of Science, Bangalore, India 1987Google Scholar
  15. 15.
    Y. V. R. K. Prasad,Indian J. Tech. 28 (1990) 435.Google Scholar
  16. 16.
    H. Ziegler, in “Progress in Solid Mechanics”, edited by I. N. Sneddon and R. Hill (North-Holland, Amsterdam, 1963) p. 93.Google Scholar
  17. 17.
    K. Laue andH. Stenger, in “Extrusion” (ASM, Metals Park, OH, 1981) p. 109.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • D. Padmavardhani
    • 1
  • Y. V. R. K. Prasad
    • 1
  1. 1.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations