Journal of Materials Science

, Volume 28, Issue 19, pp 5257–5261 | Cite as

Electrophoretic preparation of antimonic acid film

  • K. Kuwabara
  • Y. Noda


Electrophoretic preparation has been studied to develop a useful method for the deposition of proton-conductive antimonic acid. The substrate used was ITO-glass coated with a tungsten trioxide thin film and was operated mainly as the anode. Antimonic acid powder, which had been ground beforehand with a ball mill, was dispersed in acetone to prepare the suspension. For preparation of a suitable depositing suspension, ammonium hydroxide and amyl alcohol were effective as the first and second additive, respectively. The applied voltage and time were found to be important factors for the formation of smooth and adhesive films. The amount of deposit or the film thickness was controlled by regulating the quantity of electricity or time.


Polymer Alcohol Ammonium Thin Film Acetone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. England, M. G. Cross, A. Hamnett, P.J. Wiseman andJ. B. Goodenough,Solid State Ionics 1 (1980) 231.CrossRefGoogle Scholar
  2. 2.
    O. Nakamura, T. Kodama, I. Ogino andY. Miyake,Chem. Lett. (1979) 17.Google Scholar
  3. 3.
    N. Miura, Y. Ozawa, N. Yamazoe andT. Seiyama,ibid. (1980) 1275.Google Scholar
  4. 4.
    N. Matsudaira, K. Fukuyoshi, Y. Yorimoto, Y. Ikeda andK. Yoshida, in Proceedings of the Third International Display Research Conference, Japan Display' 88. (Society for International Display (SID), 1983) p. 54.Google Scholar
  5. 5.
    N. Miura, H. Kaneko andN. Yamazoe,J. Electrochem. Soc. 134 (1987) 1875.CrossRefGoogle Scholar
  6. 6.
    N. fnMiura, Y. Ozawa andN. Yamazoe,Nippon Kagaku Kai Shi (1988) 1954.Google Scholar
  7. 7.
    D. J. Stewart, O. Knop, C. Ayasse andF. W. D. Woodhams,Canad. J. Chem. 50 (1972) 690.CrossRefGoogle Scholar
  8. 8.
    M. Abe,Kogyo Kagaku Zasshi 70 (1967) 2226.CrossRefGoogle Scholar
  9. 9.
    B. Tell,J. Electrochem. Soc. 127 (1980) 2451.CrossRefGoogle Scholar
  10. 10.
    K. Kuwabara, S. Ichikawa andK. Sugiyama,ibid. 135 (1988) 2432.Google Scholar
  11. 11.
    D. R. Brown andF. W. Salt,J. Appl. Chem. 15 (1965) 40.CrossRefGoogle Scholar
  12. 12.
    M. Barraclough, N. E. Bolton, A. H. Collins andJ. M. Andrews,IEEE Trans. Magn. Mag-3 (1967) 531.CrossRefGoogle Scholar
  13. 13.
    K. Kurosawa, T. Kishi andT. Nagai,Denki Kagaku 42 (1974) 32.Google Scholar
  14. 14.
    K. Kuwabara, K. Sugiyama andM. Ohno,Solid State Ionics 44 (1991) 313.CrossRefGoogle Scholar
  15. 15.
    C. P. Gutierrez, J. R. Mosley andT. C. Wallance J. Electrochem. Soc. 109 (1962) 923.CrossRefGoogle Scholar
  16. 16.
    R. C. T. Slade, G. P. Hall andE. Skou,Solid State Ionics 35 (1989) 29.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • K. Kuwabara
    • 1
  • Y. Noda
    • 1
  1. 1.Department of Applied Chemistry Faculty of EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations