Advertisement

Journal of Materials Science

, Volume 28, Issue 19, pp 5223–5228 | Cite as

Thermal shock of quartz lascas

  • H. Iwasaki
  • D. Torikai
Papers

Abstract

As a pre-treatment to grinding, quartz lascas (crushed pieces) were thermally shocked into room-temperature water by quenching from temperatures between 50 and 800 °C. Comminuted particles exhibited two distinctive geometries, granular forTq(quench) <Tc (573 °C) and needle-like whenTq>Tc. The needle-like shapes become thinner and longer with increasing temperature aboveTc. The differences in shape are believed to result from the differences in the crack generation patterns which are governed by the thermoelastic properties in the α-phase and β-phase of the quartz during the thermal shock process. Crack densities induced by the thermal shock were measured as a function ofTq. For the temperature range of ∼200 °C<Tq<Tc andTc<Tq<∼800 °C, the resulting crack densities were determined to be governed by the rate of crack nucleation, which is characterized by an Arrhenius-type equation. The activation energies associated with the crack nucleation rates for the two regions were determined to be 14 and 39 kJ mol−1, respectively.

Keywords

Polymer Quartz Activation Energy Generation Pattern Thermal Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gross andS. R. Zimmerley,Trans. AIME 87 (1930) 7.Google Scholar
  2. 2.
    Idem, ibid. 87 (1930) 27.Google Scholar
  3. 3.
    Idem, ibid. 87 (1930) 35.Google Scholar
  4. 4.
    J. W. Axelson andE. L. Piret,Ind. Engng Chem. 42 (1950) 665.CrossRefGoogle Scholar
  5. 5.
    J. W. Axelson, J. T. Adons, J. F. Johnson, J. N. S. Kwong andE. L. Piret,Trans. AIME 190 (1951) 1061.Google Scholar
  6. 6.
    A. M. Gaudin andT. P. Meloy,ibid. 223 (1962) 40.Google Scholar
  7. 7.
    Idem. ibid. 223 (1962) 43.Google Scholar
  8. 8.
    D. F. Kelsall, K. J. Reid andC. J. Restarick,Powder Technol. 1 (1967/68) 291.CrossRefGoogle Scholar
  9. 9.
    D. F. Kelsall, K. J. Reid andC. J. Restarick,ibid. 2 (1968/69) 162.CrossRefGoogle Scholar
  10. 10.
    Idem, ibid. 3 (1969/70) 170.CrossRefGoogle Scholar
  11. 11.
    D. F. Kelsall, P. S. B. Stewart andK. R. Weller,ibid. 1 (1973) 293.CrossRefGoogle Scholar
  12. 12.
    Y. Kanda, S. Sano andS. Yashima,ibid. 48 (1986) 263.CrossRefGoogle Scholar
  13. 13.
    S. Yashima, Y. Kanda andS. Sano,ibid. 51 (1987) 277.CrossRefGoogle Scholar
  14. 14.
    A. J. Lynch, “Mineral Crushing and Grinding Circuits” (Elsevier Scientific, Amsterdam, 1977).Google Scholar
  15. 15.
    W. D. Kingery,J. Amer. Ceram. Soc. 38 (1955) 3.CrossRefGoogle Scholar
  16. 16.
    W. B. Crandall andJ. Ging,ibid. 38 (1955) 44.CrossRefGoogle Scholar
  17. 17.
    D. P. H. Hasselman andW. B. Crandall,ibid. 46 (1963) 434.CrossRefGoogle Scholar
  18. 18.
    M. Iwasa andR. C. Bradt,Mater. Res. Bull. 22 (1987) 1241.CrossRefGoogle Scholar
  19. 19.
    R. W. Davidge andG. Tappin,Trans. Br. Ceram. Soc. 66 (1967) 405.Google Scholar
  20. 20.
    M. Ashizuka, T. E. Easler andR. C. Bradt,J. Amer. Ceram. Soc. 66 (1983) 542.CrossRefGoogle Scholar
  21. 21.
    M. Iwasa andR. C. Bradt,J. Soc. Mater. Sci. Jpn 30 (1981) 1001 (in Japanese).CrossRefGoogle Scholar
  22. 22.
    R. W. Davidge, “Mechanical Behaviour of Ceramics” (Cambridge University Press, London, 1979) p. 139.Google Scholar
  23. 23.
    W. G. Cady, “Piezoelectricity” (McGraw-Hill, New York, 1946) p. 155.Google Scholar
  24. 24.
    B. Jaffe, W. R. Cook andH. Jaffe, “Piezoelectric Ceramics” (Academic, New York, 1971) p. 29.Google Scholar
  25. 25.
    W. M. Bruner,J. Geophys. Res. 89 (1984) 4167.CrossRefGoogle Scholar
  26. 26.
    E. W. Kammer, T. E. Pardue andH. F. Frissel,J. Appl. Phys. 19 (1948) 265.CrossRefGoogle Scholar
  27. 27.
    J. F. Nye, “Physical Properties of Crystals” (Oxford University Press, London, 1957) p. 145.Google Scholar
  28. 28.
    A. H. Jay,Proc. Roy. Soc. (London) A142 (1933) 237.CrossRefGoogle Scholar
  29. 29.
    K. Kihara,Eur. J. Mineral. 2 (1990) 63.CrossRefGoogle Scholar
  30. 30.
    C. Frondel, “Silica Minerals, The System of Mineralogy”, Vol. 3 (Wiley, New York, 1962) p. 107, 120.Google Scholar
  31. 31.
    E. S. Machlin andA. S. Nowick,Trans. AIME 172 (1947) 386.Google Scholar
  32. 32.
    T. Yokobori,J. Phys. Soc. Jpn 6 (1951) 78.CrossRefGoogle Scholar
  33. 33.
    D. P. H. Hasselman, R. Badaliance, K. R. McKinney andC. H. Kim,J. Mater. Sci. 11 (1976) 458.CrossRefGoogle Scholar
  34. 34.
    J. P. Singh, K. Niihara andD. P. H. Hasselman,ibid. 16 (1981) 2789.CrossRefGoogle Scholar
  35. 35.
    B. K. Atkinson,J. Geophys. Res. 89 (1989) 4077.CrossRefGoogle Scholar
  36. 36.
    S. M. Wiederhorn andL. H. Bolz,J. Amer. Ceram. Soc. 53 (1970) 543.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • H. Iwasaki
    • 1
  • D. Torikai
    • 1
  1. 1.Laboratório de Quartzo, Departamento de Materiais, Faculdade de Engenharia MecânicaUNICAMPSão PauloBrazil

Personalised recommendations