Advertisement

Journal of Materials Science

, Volume 28, Issue 19, pp 5161–5168 | Cite as

Fatigue mechanisms in poly (methyl methacrylate) at threshold: effects of molecular weight and mean stress

  • T. R. Clark
  • R. W. Hertzberg
  • N. Mohammadi
Papers

Abstract

Fatigue tests were conducted on three linear poly (methyl methacrylate) (PMMA) resins having weight average molecular weights (Mw) of 82 000, 205 000 and 390000 and on a fourth, cross-linked sample (Mc=3337 g mol−1). Fatigue threshold test conditions included a constant load ratio (Rc=0.1) and a constant maximum stress intensity level (K max c =0.52 MPa m1/2). TheRc=0.1 test results demonstrated that fatigue resistance increased with increasingMw, and that the cross-linked sample possessed a higher fatigue threshold than the linear Iow-Mw material. However, the K max c test results revealed the opposite trend, with fatigue resistance decreasing with increasingMw and chemical crosslinking. The marked change in relative fatigue resistance of the PMMA resins investigated under high mean stress conditions is believed to be a consequence of the competition between two molecular deformation mechanisms: chain scission and chain slippage. The presumed shift in operative mechanism as a function of theR level is reflected in differences noted on the fracture surfaces of the PMMA resins studied. Discontinuous growth band formation, which is indicative of large amounts of chain slippage, is favoured by lowMw and lowR ratios, but disappears in association with high-Mw and highR-ratio test conditions.

Keywords

PMMA Methyl Methacrylate Fatigue Resistance Weight Average Molecular Weight Fatigue Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. C. Paris, in Proceedings of the 10th Sagamore Conference (Syracuse University Press, Syracuse, NY, 1964) p. 107.Google Scholar
  2. 2.
    AMERICAN SOCIETY FOR TESTING AND MATERIALS: ASTM Standard E 647-86A: “Standard Test Method for Measurement of Fatigue Crack Growth Rates” (1986) p. 899.Google Scholar
  3. 3.
    A. Wöhler,Z. Bauwesen 10 (1860).Google Scholar
  4. 4.
    C. M. Hudson, NASA Tech. Note D-3590 (1969).Google Scholar
  5. 5.
    R. J. Stofanak, R. W. Hertzberg, G. Miller, R. Jaccard andJ. K. Donald,Engng Fract. Mech. 7 (1983) 527.CrossRefGoogle Scholar
  6. 6.
    R. O. Ritchie,Met. Sci. 11 (1977) 368.CrossRefGoogle Scholar
  7. 7.
    W. A. Herman, R. W. Hertzberg andR. Jaccard,Fatigue Fract. 11 (1988) 303.CrossRefGoogle Scholar
  8. 8.
    R. G. Forman, V. E. Kearney andR. M. Engle,J. Basic Engng Trans., ASME 89 (1967) 459.CrossRefGoogle Scholar
  9. 9.
    T. R. Clark, R. W. Hertzberg andJ. A. Manson,J. Test. Eval. 18 (1990) 319.CrossRefGoogle Scholar
  10. 10.
    A. J. Kinloch andR. J. Young, “Fracture Behavior of Polymers” (Applied Science, New York, 1983).Google Scholar
  11. 11.
    H. H. Kausch, “Polymer Fracture” (Springer-Verlag, Berlin, 1978).Google Scholar
  12. 12.
    P. Prentice,J. Mater. Sci. 20 (1985) 1445.CrossRefGoogle Scholar
  13. 13.
    Y. Termonia andP. Smith,Macromolecules 20 (1987) 835.CrossRefGoogle Scholar
  14. 14.
    J. R. Martin, J. F. Johnson andA. R. Cooper,J. Macromol. Sci. Revs Macromol. Chem. C8 (1972) 57.CrossRefGoogle Scholar
  15. 15.
    C. W. Bondurant, PhD dissertation, Virginia Polytechnical Institute (1960).Google Scholar
  16. 16.
    N. Kishi andK. Kamata,Oyo Butsuri 30 (1961) 411.Google Scholar
  17. 17.
    R. P. Kusy andD. T. Turner,Polymer 17 (1976) 161.CrossRefGoogle Scholar
  18. 18.
    E. Foden, D. R. Morrow andJ. A. Sauer,J. Appl. Polym. Sci. 16 (1972) 519.CrossRefGoogle Scholar
  19. 19.
    J. A. Sauer, E. Foden andD. R. Morrow,Polym. Engng. Sci. 17 (1977) 246.CrossRefGoogle Scholar
  20. 20.
    J. A. Sauer,Polymer 19 (1978) 859.CrossRefGoogle Scholar
  21. 21.
    S. Warty, J. A. Sauer andA. Charlesby,Eur. Polym. J. 15 (1979) 445.CrossRefGoogle Scholar
  22. 22.
    M. D. Skibo, J. A. Manson andR. W. Hertzberg,J. Macromol. Sci-Phys. B14 (1977) 525.CrossRefGoogle Scholar
  23. 23.
    S. L. Kim, M. D. Skibo, J. A. Manson andR. W. Hertzberg,Polym. Engng. Sci. 17 (1977) 194.CrossRefGoogle Scholar
  24. 24.
    S. L. Kim, J. Janiszewski, M. D. Skibo, J. A. Manson andR. W. Hertzberg,ibid. 19 (1979) 145.CrossRefGoogle Scholar
  25. 25.
    J. Janiszewski, R. W. Hertzberg andJ. A. Manson, in “Fracture Mechanics: Thirteenth Conference”, ASTM STP 743, edited by R. Roberts (American Society for Testing and Materials, Easton, Maryland, 1981) p. 125.CrossRefGoogle Scholar
  26. 26.
    P. E. Bretz, R. W. Hertzberg andJ. A. Manson,J. Appl. Polym. Sci. 27 (1982) 1707.CrossRefGoogle Scholar
  27. 27.
    J. Michel, J. A. Manson andR. W. Hertzberg,Polymer 25 (1984) 1657.CrossRefGoogle Scholar
  28. 28.
    S. L. Kim, J. Janiszewski, M. D. Skibo, J. A. Manson andR. W. Hertzberg,Polym. Engng. Sci. 18 (1978) 1093.CrossRefGoogle Scholar
  29. 29.
    T. R. Clark, R. W. Hertzberg andJ. A. Manson, in Fatigue 90, the Fourth International Conference on Fatigue and Fatigue Threshold in the Pacific Basin, Vol. II, edited by H. Kitagawa and T. Tanaka (Materials and Component Engineering Publications, Birmingham, 1990) p. 813.Google Scholar
  30. 30.
    R. W. Hertzberg andJ. A. Manson, “Fatigue of Engineering Plastics” (Academic Press, London, 1980).Google Scholar
  31. 31.
    J. Brandrup andE. H. Immergut, “Polymer Handbook” 3rd Edn (Wiley, New York, 1985).Google Scholar
  32. 32.
    A. Saxena, S. J. Hudak, Jr.,J. K. Donald andD. W. Schmidt,J. Test Eval. 6 (1978) 167.CrossRefGoogle Scholar
  33. 33.
    T. R. Clark, R. W. Hertzberg andN. Mohammadi, in 8th International Conference on Deformation, Yield, and Fracture of Polymers, Churchill Conference, April 1991, Paper 31.Google Scholar
  34. 34.
    M. D. Skibo, Unpublished work, Lehigh University.Google Scholar
  35. 35.
    M. Kubo, M. Katagiri andY. Hori,Nippon Kikai Gakkai Ronbunshu, A Hen 52 (484) (1986) 2598.Google Scholar
  36. 36.
    C. J. G. Plummer andA. M. J. Donald,J. Mater. Sci. 24 (1989) 1399.CrossRefGoogle Scholar
  37. 37.
    R. W. Hertzberg, J. A. Manson andW. C. Wu, ASTM STP536 (1973) 391.Google Scholar
  38. 38.
    K. Suzuki, S. Yada, N. Mabuchi, K. Seiuchi andY. Matsutani,Kobuntani Kagaku 28 (1971) 920.CrossRefGoogle Scholar
  39. 39.
    P. A. Westbrook andJ. F. Feller,Phil. Mag. A55 (1987) 253.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • T. R. Clark
    • 1
  • R. W. Hertzberg
    • 1
  • N. Mohammadi
    • 1
  1. 1.Department of Materials Science and Engineering, Whitaker Laboratory, Lab. 5Lehigh UniversityBethlehemUSA

Personalised recommendations