Advertisement

Journal of Materials Science

, Volume 28, Issue 19, pp 5155–5160 | Cite as

Effect of carbon dioxide on the reaction of YBa2Cu2O6.5+x with water vapour

  • K. Brzezinska
  • S. Bruckenstein
  • L. J. Klemptner
  • J. D. Hodge
Papers

Abstract

The influence of carbon dioxide on the reaction between YBa2Cu3O6.5+x powder and air saturated with water vapour was studied. Superconductor powder samples were exposed to air that was saturated with water vapour which (a) was free of CO2, (b) was saturated with CO2, and (c) contained ambient levels of CO2. In another experiment, the effect of pure, dry CO2 (1 atmosphere partial pressure) was studied. The time variations of sample weight, oxygen content and X-ray diffraction (XRD) spectrum were determined. In water-saturated air, the rate of decrease of the oxygen content in YBa2Cu3O6.5+x decreased with increasing partial pressure of CO2. XRD was used to identify the reaction products. Higher partial pressures of CO2 favour the formation of a barrier layer (BaCO3) which inhibits the reaction of the underlying YBa2Cu3O6.5+x with water vapour. Very little decrease in oxygen content occurred on exposure of YBa2Cu3O6.5+x to pure, dry CO2.

Keywords

Polymer Atmosphere Dioxide Carbon Dioxide Water Vapour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang andC. W. Chu,Phys. Rev. Lett. 58 (1987) 908.CrossRefGoogle Scholar
  2. 2.
    M. F. Yan, R. L. Barns, H. M. O'Bryan jr,P. K. Gallagher, R. C. Sherwood, andS. Jin,Appl. Phys. Lett. 51 (1987) 532.CrossRefGoogle Scholar
  3. 3.
    M. M. Garland,J. Mater. Res. 3 (5) (1988) 830.CrossRefGoogle Scholar
  4. 4.
    R. L. Barns, andR. A. Laudise,Appl. Phys. Lett. 51 (1987) 1373.CrossRefGoogle Scholar
  5. 5.
    J. G. Thompson, B. G. Hyde, R. L. Withers, J. S. Anderson, J. D. Fitzgerald, J. Bitmead, M. S. Paterson, andA. M. Stewart,Mater. Res. Bull. 22 (1987) 1715.CrossRefGoogle Scholar
  6. 6.
    Y. Ikuma, M. Yoshimura, andS. Kabe,J. Mater. Res. 5 (1) (1990) 17.CrossRefGoogle Scholar
  7. 7.
    N. P. Bansal, andA. L. Sandkuhl,Appl. Phys. Lett. 52 (4) (1988) 323.CrossRefGoogle Scholar
  8. 8.
    L. B. Harris, andF. K. Nyang,Solid State Commun. 67 (4) (1988) 359.CrossRefGoogle Scholar
  9. 9.
    P. K. Gallagher, H. M. O'Bryan jr,S. A. Sunshine, andD. W. Murphy,Mater. Res. Bull. 22 (1987) 995.CrossRefGoogle Scholar
  10. 10.
    J. M. Rosamilia, B. Miller, L. F. Schneemeyer, J. W. Waszczak, andH. M. O'Bryan jr,J. Electrochem. Soc. 134 (1987) 1863.CrossRefGoogle Scholar
  11. 11.
    S. E. Trouer, S. D. Atkinson, P. A. Fuierer, J. H. Adair, andR. E. Newnham,Ceram. Bull 7 (4) (1988) 759.Google Scholar
  12. 12.
    A. Barkatt, H. Hojaji, andK. A. Michael,Adv. Ceram. Mater. 2 (1987) 701.CrossRefGoogle Scholar
  13. 13.
    I. M. Kolthoff, E. B. Sandell, E. J. Meehan, andS. Bruckenstein “Quantitative chemical analysis,” 4th Edn, Chs. 44 and 45 (The MacMillan Company, London, 1966).Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • K. Brzezinska
    • 1
  • S. Bruckenstein
    • 1
  • L. J. Klemptner
    • 2
  • J. D. Hodge
    • 2
  1. 1.Department of ChemistryUniversity at Buffalo, State University of New YorkBuffaloUSA
  2. 2.CPS Superconductor CorporationMilfordUSA

Personalised recommendations