Journal of Materials Science

, Volume 28, Issue 19, pp 5148–5154 | Cite as

New methodology for the determination of hydrogen permeation parameters in layered materials

  • P. E. V. De Miranda
  • F. D. Fassini


A new methodology for interpreting hydrogen permeation test data has been proposed with the objective of determining hydrogen permeability, solubility and diffusivity in materials containing surface-coating layers. The mathematical development of equations has been undertaken for steady-state hydrogen permeation conditions allowing the determination of all parameters of interest for the composite material and the coating layer itself. For a single-layered material, a set of three statistically significant permeation tests is enough to determine all variables for the substrate, the composite material and the coating layer. This methodology has been applied to published results on the hydrogen permeation in nitrogen ion-implanted extra-low carbon steel, showing that the hydrogen diffusion coefficient in such a coating layer is several orders of magnitude lower than that in the substrate. The hydrogen solubility in the layer is, by contrast, increased. The magnitudes of these effects depend on the nitrogen concentration in the surface layer.


Carbon Steel Coating Layer Hydrogen Diffusion Hydrogen Permeation Mathematical Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. V. Devanathan andZ. Stachurski,J. Electrochem. Soc. 111 (1964) 619.CrossRefGoogle Scholar
  2. 2.
    N. Boes andH. Züchner,J. Less. Common Metals 49 (1976) 223.CrossRefGoogle Scholar
  3. 3.
    R. Kirchheim andR. B. McClellan,J. Electrochem. Soc. 127 (1980) 2419.CrossRefGoogle Scholar
  4. 4.
    M. F. Stevens andI. M. Bernstein,Met. Trans. 20A (1989) 909.CrossRefGoogle Scholar
  5. 5.
    R. Kirchheim, T. Mutschele, W. Kieninger, H. Leiter, R. Birringer andT. D. Koble,Mater. Sci. Engng 99 (1988) 457.CrossRefGoogle Scholar
  6. 6.
    J. Crank, “Mathematics of Diffusion” (Clarendon, Oxford, 1956).Google Scholar
  7. 7.
    A. M. Brass, J. Chene andJ. C. Pivin,J. Mater. Sci. 24 (1989) 1963.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • P. E. V. De Miranda
    • 1
  • F. D. Fassini
    • 1
  1. 1.EE-COPPE, Federal University of Rio de JaneiroRio de Janeiro, RJBrazil

Personalised recommendations