Advertisement

Journal of Materials Science

, Volume 26, Issue 13, pp 3689–3692 | Cite as

Seeding effects on crystallization temperatures of cordierite glass powder

  • U. Selvaraj
  • S. Komarneni
  • R. Roy
Papers

Abstract

The role of solid state epitaxy in the crystallization of nanocomposite cordierite glass to glass ceramic was investigated. The use of isostructural (α-cordierite) seeds in cordierite glass led to a lowering in the crystallization temperature to form glass ceramic by about 50 °C compared to the unseeded glass. The use of non-isostructural seeds such as ZrO2 and TiO2 did not lower the crystallization temperature of cordierite glass to glass ceramic, and in the case of the TiO2-seeded glass the crystallization temperature increased by about 50 °C compared to the unseededα-cordierite glass. The lowering in crystallization temperature byα-cordierite seeding can be attributed to the nucleation and epitaxial growth mechanism.

Keywords

Polymer TiO2 Crystallization Solid State Crystallization Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. Stookey, J. S. Olcott, H. M. Garfinkel andD. L. Rothermel, “Advances in Glass Technology” (Plenum, New York, 1962) p. 397.Google Scholar
  2. 2.
    P. W. McMillan, “Glass-Ceramics” (Academic, New York, 1964).Google Scholar
  3. 3.
    J. J. Hammel, in “Advances in Nucleation and Crystallization in Glasses”, edited by L. L. Hench and S. W. Freiman (American Ceramic Society, Columbus, Ohio, 1971) p. 1.Google Scholar
  4. 4.
    R. Roy,J. Amer. Ceram. Soc. 43 (1960) 670.CrossRefGoogle Scholar
  5. 5.
    E. A. Porai-Koshits, in “Phase Separation of Glasses”, edited by O. V. Mazurin and E. A. Porai-Koshits (North Holland, Amsterdam, 1984) p. 111.Google Scholar
  6. 6.
    R. Roy,Science 238 (1987) 1664.CrossRefGoogle Scholar
  7. 7.
    R. Roy, Y. Suwa andS. Komarneni, in “Science of Ceramic Chemical Processing”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1986) p. 247.Google Scholar
  8. 8.
    R. Roy, S. Komarneni andW. A. Yarbrough, in “Some New Advances with SSG-Derived Nanocomposites”, edited by J. D. MacKenzie and D. R. Ulrich (Wiley Interscience, 1988) p. 571.Google Scholar
  9. 9.
    G. Vilmin, S. Komarneni andR. Roy,J. Mater. Res. 2 (1987) 489.CrossRefGoogle Scholar
  10. 10.
    D. M. Miller, US Patent No. 3 926 648, December 1975.Google Scholar
  11. 11.
    C. I. Helgesson, in “Science of Ceramics”, Vol. d8 (British Ceramic Society, Staffordshire, 1976) p. 347.Google Scholar
  12. 12.
    A. M. Kazakos, M. S. Thesis, Pennsylvania State University, 1989.Google Scholar
  13. 13.
    B. H. Mussler andM. W. Shafer,Ceram. Bull. 63 (1984) 705.Google Scholar
  14. 14.
    G. H. Beall, in “Commercial Glasses”, Vol. 18, edited by D. C. Boyd and J. F. MacDowell (American Ceramic Society, Columbus, Ohio, 1986) p. 157.Google Scholar
  15. 15.
    A. G. Gregory andT. J. Veasey,J. Mater. Sci. 6 (1971) 1312.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • U. Selvaraj
    • 1
  • S. Komarneni
    • 1
  • R. Roy
    • 1
  1. 1.Materials Research LaboratoryPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations