Advertisement

Journal of Materials Science

, Volume 26, Issue 13, pp 3680–3684 | Cite as

DSC study of some Ge-Sb-S glasses

  • M. D. Baró
  • N. Clavaguera
  • S. Suriñach
  • Č. Barta
  • N. Ryšavá
  • A. Tříska
Papers

Abstract

Differential scanning calorimetric analysis was made on three glasses of the Ge-Sb-S system in order to obtain insight into the kinetics of glass transition and of the inherent relaxation processes occurring in the glass transition region. The heat capacity of the supercooled liquid referred to as the glass was measured. The value of the heat capacity jump at the glass transition, ΔCp, has been obtained for each glass. These values are in good agreement with those found for similar chalcogenide glasses. The relaxation process in the glassy alloy Ge30Sb10S60 was investigated by measuring the excess heat capacity of the annealed glass in the glass transition region. A relaxation enthalpy of 2.7 meV for annealing at 595 K for 17 h was determined. A kinetic study of the glass transition in the Ge20Sb10S70 glass was done. From the change in the glass transition temperature with scanning rate, an apparent activation energy of 3.9 eV was obtained. This value agrees with those measured for the apparent activation energy of the shear viscosity in similar glasses.

Keywords

Heat Capacity Glass Transition Glass Transition Temperature Shear Viscosity Relaxation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Watanabe, M. Ishikawa andT. Shimizu,J. Phys. Soc. Jpn 45 (1978) 1603.CrossRefGoogle Scholar
  2. 2.
    L. Koudelka, M. Frumar andM. Pisarcik,J. Non-Cryst. Solids 41 (1980) 171.CrossRefGoogle Scholar
  3. 3.
    C. T. Moynihan, A. J. Easteal, M. A. De Bolt andJ. Tucker,J. Amer. Ceram. Soc. 59 (1976) 12.CrossRefGoogle Scholar
  4. 4.
    S. N. Critchon andC. T. Moynihan,J. Non-Cryst. Solids 99 (1988) 413.CrossRefGoogle Scholar
  5. 5.
    I. Avramov andI. Gutzow,ibid. 104 (1988) 148.CrossRefGoogle Scholar
  6. 6.
    H. Baxi andT. B. Massalski,Mater. Sci. Engng 97 (1988) 291.CrossRefGoogle Scholar
  7. 7.
    M. T. Clavaguera-Mora, S. Suriñach, M. D. Baró andN. Clavaguera,J. Non-Cryst. Solids 86 (1986) 311.CrossRefGoogle Scholar
  8. 8.
    N. Clavaguera, M. T. Clavaguera-Mora, S. Suriñach andM. D. Baró,ibid. 104 (1988) 283.CrossRefGoogle Scholar
  9. 9.
    L. Tichy, N. Rysavá, A. Triska, H. Tichá andJ. Klikorka,Solid State Commun. 49 (1984) 303.CrossRefGoogle Scholar
  10. 10.
    R. Winter, T. Bodenstein, C. Szornel andP. A. Egelstaff,J. Non-Cryst. Solids 106 (1988) 100.CrossRefGoogle Scholar
  11. 11.
    J. Wong andC. A. Angell, in “Glass structure by spectroscopy” (Marcel Dekker, New York, 1976) Ch. 1.Google Scholar
  12. 12.
    S. Suriñach, M. D. Baró, N. Clavaguera andM. T. Clavaguera-Mora,Thermochim. Acta 85 (1985) 175.CrossRefGoogle Scholar
  13. 13.
    S. Suriñach, N. Clavaguera andM. D. Baró,Mater. Sci. Engng 97 (1988) 533.CrossRefGoogle Scholar
  14. 14.
    M. Frumar, H. Tichá, M. Bures andL. Koudelka,Z. Chem. 15 (1975) 199.Google Scholar
  15. 15.
    D. Linke andJ. Böchel,Z. Anorg. Allg. Chem. 419 (1976) 97.CrossRefGoogle Scholar
  16. 16.
    P. S. L. Narasimham, A. Giridhar andS. Mahadevan,J. Non-Cryst. Solids 43 (1981) 301.CrossRefGoogle Scholar
  17. 17.
    R. B. Stephens,J. Appl. Phys. 49 (1978) 5855.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • M. D. Baró
    • 1
  • N. Clavaguera
    • 1
  • S. Suriñach
    • 1
  • Č. Barta
    • 2
  • N. Ryšavá
    • 2
  • A. Tříska
    • 2
  1. 1.Departament de Física, Fac. CiènciesUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Institute of PhysicsCzechoslovakian Academy of SciencePragueCzech Republic

Personalised recommendations