Journal of Materials Science

, Volume 26, Issue 13, pp 3657–3664 | Cite as

Ceramic fibres from polymer precursor containing Si-O-Ti bonds

Part II Synthesis of various types of ceramic fibres
  • Yoshio Hasegawa
  • Chun-Xiang Feng
  • Yong-Cai Song
  • Zi-Lie Tan


Polycarbosilanes containing titanium alkoxide as pendant groups (atom ratio Ti/Si = 0.07 and 0.15) were synthesized. These polymers were melt-spun and then heat-treated in a vacuum, in oxygen or ammonia gas flow, resulting in Si-Ti-C-O, Si-Ti-0 and Si-Ti-O-N fibres, respectively. The pyrolysis process of the polymer is discussed in connection with the mechanical properties and the structure of the fibre. At high heat-treatment temperatures, β-SiC and TiC (in Si-Ti-C-O fibre), anatase (in Si-Ti-O fibre) and TiN (in Si-Ti-O-N fibre) crystallized, which may be closely related to the decomposition of the Si-O-Ti bond in the fibre.


Oxygen Polymer Ammonia Titanium Mechanical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y.-C. Song, Y. Hasegawa, S.-J. Yang andM. Sato,J. Mater. Sci. 23 (1988) 1911.CrossRefGoogle Scholar
  2. 2.
    H. Ichikawa, F. Machino, S. Mitsuna, T. Ishikawa, K. Okamura andY. Hasegawa,ibid. 21 (1986) 4352.CrossRefGoogle Scholar
  3. 3.
    Y. Hasegawa andK. Okamura,ibid. 18 (1983) 3633.CrossRefGoogle Scholar
  4. 4.
    Y. Hasegawa,ibid. 24 (1989) 1177.CrossRefGoogle Scholar
  5. 5.
    K. Kamiya, S. Sakka andN. Tashiro,Yogyo-Kyokai-Shi 84 (1976) 614.CrossRefGoogle Scholar
  6. 6.
    K. Kamiya, S. Sakka andS. Ito,ibid. 85 (1977) 599.CrossRefGoogle Scholar
  7. 7.
    Y. Abe, T. Gunji, M. Hikita, Y. Nagao andT. Misono,ibid. 94 (1986) 1243.CrossRefGoogle Scholar
  8. 8.
    S. Sakka,Hyomen 19 (1981) 430.Google Scholar
  9. 9.
    W. C. LaCourse, “Better Ceramics Through Chemistry”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (North-Holland, Amsterdam, 1984) p. 53.Google Scholar
  10. 10.
    K. Kamiya, K. Tanimoto andT. Yoko.J. Mater. Sci. Lett. 5 (1986) 402.CrossRefGoogle Scholar
  11. 11.
    T. Maki, T. Kokubo andS. Sakka,Bull. Inst. Chem. Res. Kyoto Univ. 64 (1986) 292.Google Scholar
  12. 12.
    Y. Abe, N. Sugimoto, Y. Nagao andT. Misono,J. Non-Cryst. Solids 104 (1988) 292.CrossRefGoogle Scholar
  13. 13.
    S. Sakka andK. Kamiya,ibid. 42 (1980) 403.CrossRefGoogle Scholar
  14. 14.
    K. Okamura, M. Sato, Y. Hasegawa andT. Amano,Chem. Lett. (1984) 2059.Google Scholar
  15. 15.
    K. Okamura, M. Sato andY. Hasegawa,Ceram. Int. 13 (1987) 55.CrossRefGoogle Scholar
  16. 16.
    M. Sato, Y. Hasegawa andK. Okamura,J. Ceram. Soc. Jpn Inter. Edn. 95 (1987) 937.Google Scholar
  17. 17.
    K. Kamiya, T. Yoko andM. Bessho,J. Mater. Sci. 22 (1987) 937.CrossRefGoogle Scholar
  18. 18.
    A. Kato, Y. Ono, S. Kawazoe andI. Mochida,Yogyo-Kyokai-Shi 80 (1972) 114.CrossRefGoogle Scholar
  19. 19.
    R. C. G. Swann, R. R. Mehta andT. P. Cauge,J. Electrochem. Soc. 114 (1967) 713.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Yoshio Hasegawa
    • 1
  • Chun-Xiang Feng
    • 2
  • Yong-Cai Song
    • 2
  • Zi-Lie Tan
    • 2
  1. 1.The Research Institute for Special Inorganic MaterialsIbaraki-kenJapan
  2. 2.The Department of Materials Science and Applied ChemistryChangsha Institute of TechnologyChangsha, HunanPeople’s Republic of China

Personalised recommendations