Advertisement

Journal of Materials Science

, Volume 26, Issue 13, pp 3649–3656 | Cite as

Slip casting of partially stabilized zirconia

  • A. K. Nikumbh
  • H. Schmidt
  • K. Martin
  • F. Porz
Papers

Abstract

Casting behaviour and rheological properties are studied in order to define the appropriate conditions under which to prepare slips for the production of high-temperature ceramics. Various commercial powders have been used, which were characterized with respect to morphology, particle size distribution and specific surface area. Zirconia slips with 75 wt% solid content were prepared with distilled water and ethanol as dispersing agent, with and without deflocculant. Hydrochloric acid and tetramethylammonium hydroxide were used to control the pH. Investigations into rheology, i.e. the dependence of viscosity and shear stress on shear rate, were performed. The slip, green and sedimentation bulk densities were measured.

Keywords

Polymer Particle Size Viscosity Zirconia Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Huber andJ. Heienrich, in “2nd European Symposium Engineering Ceramic” 1987, edited by F. L. Riley (Elsevier Applied Science, London, 1989) pp. 203–28.Google Scholar
  2. 2.
    R. C. Bradt,ibid.in, edited by F. L. Riley (Elsevier Applied Science, London, 1989) pp. 229–40.CrossRefGoogle Scholar
  3. 3.
    D. L. Porter andA. H. Heuer,J. Amer. Ceram. Soc. 60 (1977) 183.CrossRefGoogle Scholar
  4. 4.
    T. K. Gupta, “Fracture Mechanics of Ceramics”, Vol. 14, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1988) p. 877.Google Scholar
  5. 5.
    T. Masaki,J. Amer. Ceram. Soc. 69 (1986) 638.CrossRefGoogle Scholar
  6. 6.
    T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, L. H. Cadoff andB. R. Rossing,J. Mater. Sci. 12 (1977) 2421.CrossRefGoogle Scholar
  7. 7.
    T. K. Gupta, F. F. Lange andJ. H. Bechtold,ibid. 13 (1978) 1464.CrossRefGoogle Scholar
  8. 8.
    A. G. Evans andA. H. Heuer,J. Amer. Ceram. Soc. 63 (1980) 241.CrossRefGoogle Scholar
  9. 9.
    R. Moreno, J. Requena andJ. S. Moya,ibid. 71 (1988) 1036.CrossRefGoogle Scholar
  10. 10.
    H. Taguchi, Y. Takahashi andH. Miyamoto,Amer. Ceram. Soc. Bull. 64 (1985) 325.Google Scholar
  11. 11.
    Idem., J. Amer. Ceram. Soc. 68 (1985) C-264.CrossRefGoogle Scholar
  12. 12.
    S. G. Whiteway, M. Coll-Palagos andC. R. Masson,Amer. Ceram. Soc. Bull. 40 (1961) 432.Google Scholar
  13. 13.
    C. R. Masson, S. G. Whiteway andC. A. Collings,ibid. 42 (1963) 745.Google Scholar
  14. 14.
    M. Rivier andA. D. Pelton,ibid. 57 (1978) 183.Google Scholar
  15. 15.
    R. M. William andA. Ezis,ibid. 62 (1988) 607.Google Scholar
  16. 16.
    H. M. M. Diz andJ. M. Ferreira,Brit. Ceram. Proc. 37 (1986) 159.Google Scholar
  17. 17.
    J. Requena, R. Moreno andJ. S. Moya,ibid. 38 (1986) 101.Google Scholar
  18. 18.
    I. A. Aksay, F. F. Lange andB. I. Davis,Commun. Amer. Ceram. Soc. 66 (1983) C-190.CrossRefGoogle Scholar
  19. 19.
    J. Lyklema,Adv. Colloid Interface Sci. 2 (1968) 65.CrossRefGoogle Scholar
  20. 20.
    A. Koelmans andP. Overbeek,Disc. Faraday Soc. 18 (1954) 52.CrossRefGoogle Scholar
  21. 21.
    N. DeRooy, P. L. De Bruyn andJ. Th. G. Overbeek,J. Colloid Interface Sci. 75 (1980) 542.CrossRefGoogle Scholar
  22. 22.
    L. A. Romo,Disc. Faraday Soc. 42 (1966) 232.CrossRefGoogle Scholar
  23. 23.
    W. E. Hauth Jr,J. Amer. Ceram. Soc. 32 (1949) 394.CrossRefGoogle Scholar
  24. 24.
    Idem., J. Phys. Colloid Chem. 54 (1950) 142.CrossRefGoogle Scholar
  25. 25.
    Otto Ruff,Z. Anorg. Allgem. chem. 133 (1924) 187.CrossRefGoogle Scholar
  26. 26.
    P. J. Anderson andP. Murray,J. Amer. Ceram. Soc. 42 (1959) 70.CrossRefGoogle Scholar
  27. 27.
    P. D. S. St Pierre,Trans. Brit. Ceram. Soc. 51 (1952) 260Google Scholar
  28. 28.
    A. K. Nikumbh, H. Schmidt, K. Martin, F. Porz andF. Thümmler,J. Mater. Sci. 25 (1990) 15.CrossRefGoogle Scholar
  29. 29.
    R. C. Garvie andP. S. Nicholson,J. Amer. Ceram. Soc. 55 (1972) 303.CrossRefGoogle Scholar
  30. 30.
    R. C. Garvie, R. H. Hannink andR. T. Pascoe,Nature (London) 258 (1975) 703.CrossRefGoogle Scholar
  31. 31.
    R. K. McGeary,J. Amer. Ceram. Soc. 44 (1961) 513.CrossRefGoogle Scholar
  32. 32.
    R. J. Morgan,Trans. Soc. Rheol. 12 (1968) 511.CrossRefGoogle Scholar
  33. 33.
    M. D. Sacks, in Proceedings of the International Conference, “Ultrastructure Processing of Ceramic, Glasses and Composites”, Gainesville, Florida, February 1985, edited by L. Hench (Wiley Interscience, New York, USA, 1986) p. 418.Google Scholar
  34. 34.
    A. L. Johnson andF. H. Norton,J. Amer. Ceram. Soc. 24 (1941) 189.CrossRefGoogle Scholar
  35. 35.
    E. G. Walker,Trans. Brit. Ceram. Soc. 64 (1965) 233.Google Scholar
  36. 36.
    J. E. Funk, “Advances in Ceramics”, Vol. 9, edited by J. A. Mangels and G. I. Messin (American Ceramic Society, Columbus, Ohio, USA, 1984) p. 76.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • A. K. Nikumbh
    • 1
  • H. Schmidt
    • 2
  • K. Martin
    • 2
  • F. Porz
    • 2
  1. 1.Department of ChemistryUniversity of PoonaGaneshkhind, PuneIndia
  2. 2.Institut für Keramik im Maschinenbau und Institut für Werkstoffkunde II der Universitat KarlsruheGermany

Personalised recommendations