Journal of Materials Science

, Volume 26, Issue 13, pp 3603–3612 | Cite as

Energetic and kinetic evaluations conducted in Cu-3.34 at % Sn through differential scanning calorimetry

  • A. Varschavsky


Microcalorimetric enthalpy measurements associated with the different peaks appearing during linear heating of Cu-3.34 at % Sn were made in a 50% cold-rolled alloy. Unlike the situation in the deformed material, quenched and furnace-cooled alloys do not exhibit thermal events at any of the heating rates employed in the temperature range scanned. In the cold-rolled condition, from the energetic and kinetic analysis of the first exothermic peak, designated Stage 1, and of the endothermic peak, designated Stage 3, it was consistently inferred that they correspond, respectively, to the growth on dislocations of a metastable phase ε′ and to its subsequent dissolution prior to recrystallization. Such inference was also supported by Vickers microhardness and yield-stress determinations. The calculated volume fraction for ε′ after Stage 2 goes to completion, is about 0.02. A suitable expression previously developed for enthalpy release due to the pinning of solute atoms to partial dislocations was applied to compute dislocation density from the exothermic peak (Stage 2). The calculated value is in excellent agreement with those obtained from the analysis of the recrystallization trace (Stage 4) and from tensile tests, thus confirming that the second DSC trace actually corresponds to the solute segregation process. It is also suggeseted that additional dislocation-induced formation of ε′ might take place as a consequence of the enhanced solute concentration around partial dislocations. The non-isothermal dissolution kinetics of ε′ was adequately described by an integrated kinetic model function essentially appropriate for application in one-dimensional diffusion situations.


Differential Scanning Calorimetry Exothermic Peak Partial Dislocation Vickers Microhardness Dissolution Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. R. Parker, “Materials Data Book” (McGraw-Hill, NY, 1967) p. 164.Google Scholar
  2. 2.
    B. Russel andP. Vela,Phil. Mag. 8 (1963) 677.CrossRefGoogle Scholar
  3. 3.
    B. Russel,ibid. 8 (1963) 615.CrossRefGoogle Scholar
  4. 4.
    K. W. Qian andR. E. Reed-Hill,Acta Metall. 3 (1983) 87.CrossRefGoogle Scholar
  5. 5.
    “Metals Handbook”, Vol. 8, 8th Edn (American Society for Metals, Metals Park, Ohio, 1973) p. 299.Google Scholar
  6. 6.
    N. Behnood, R. M. Douthwaite andJ. T. Evans,Acta Metall. 28 (1980) 1133.CrossRefGoogle Scholar
  7. 7.
    L. Deléhouzée andA. Deruyttere,ibid. 15 (1967) 727.CrossRefGoogle Scholar
  8. 8.
    P. C. J. Gallagher,Metall. Trans. 1 (1970) 2429.Google Scholar
  9. 9.
    E. Lang,Z. Metallkde 64 (1973) 56.Google Scholar
  10. 10.
    R. De Aisi andP. N. Adler,Metall. Trans. 8A (1977) 1177.Google Scholar
  11. 11.
    P. N. Adler andR. De Aisi,ibid. 8A (1977) 1185.CrossRefGoogle Scholar
  12. 12.
    B. Maillard, J. J. Villeneuve andC. Filliatre,Thermochim. Acta 33 (1979) 107.CrossRefGoogle Scholar
  13. 13.
    J. M. Papazian,Metall. Trans. 2A (1981) 269.CrossRefGoogle Scholar
  14. 14.
    Idem, ibid. 13A (1982) 761.CrossRefGoogle Scholar
  15. 15.
    A. Varschavsky,ibid. 13A (1982) 801.CrossRefGoogle Scholar
  16. 16.
    Idem, Mater. Sci. Engng 89 (1987) 119.CrossRefGoogle Scholar
  17. 17.
    A. Varschavsky andE. Donoso,ibid. A101 (1988) 231.CrossRefGoogle Scholar
  18. 18.
    R. J. Litvak andJ. M. Papazian,Scripta Metall. 18 (1984) 483.CrossRefGoogle Scholar
  19. 19.
    E. S. Balmuth,ibid. 18 (1984) 301.CrossRefGoogle Scholar
  20. 20.
    D. Dollimor, in “The State-of-the-Art of Thermal Analysis”, edited by O. Menis, H. Rock and P. D. Garn, NBS Special Publication no. 580 (US Government Printing Office, Washington, DC, 1980) p. 1.Google Scholar
  21. 21.
    M. E. Brown andC. A. R. Phillpotts,J. Chem. Educ. 55 (1978) 556.CrossRefGoogle Scholar
  22. 22.
    P. D. Garn,Crit. Rev. Anal. Chem. 3 (1972) 65.CrossRefGoogle Scholar
  23. 23.
    J. M. Popplewell andJ. Crane,Metall. Trans. 2 (1971) 3411.CrossRefGoogle Scholar
  24. 24.
    W. B. Pearson, ‘Structure Reports for 1959”, Published for the International Union of Crystallography, Netherlands, Vol. 23, 1965, p. 133.Google Scholar
  25. 25.
    J. Burke, “The Kinetics of Phase Transformation in Metals”, 1st Edn (Pergamon, Oxford, 1961) p. 487.Google Scholar
  26. 26.
    J. W. Christian, “Theory of Transformation of Metals and Alloys”, 2nd Edn (Pergamon, Oxford, 1975) p. 489.Google Scholar
  27. 27.
    H. E. Kissinger,Anal. Chem. 28 (1957) 1702.CrossRefGoogle Scholar
  28. 28.
    A. Varschavsky andE. Donoso,Metall. Trans. 14A (1983) 875.CrossRefGoogle Scholar
  29. 29.
    T. Ozawa,J. Thermal. Anal. 9 (1976) 369.CrossRefGoogle Scholar
  30. 30.
    C. D. Doyle,Nature (London) 207 (1965) 290.CrossRefGoogle Scholar
  31. 31.
    A. Varschavsky andE. Donoso,Thermochim. Acta 69 (1983) 341.CrossRefGoogle Scholar
  32. 32.
    Idem, J. Mater. Sci. 21 (1986) 3873.CrossRefGoogle Scholar
  33. 33.
    A. M. Brown andM. F. Ashby,Acta Metall. 28 (1980) 1085.CrossRefGoogle Scholar
  34. 34.
    J. P. Hirt andJ. Lothe, “Theory of Dislocations”, 2nd Edn (Wiley, New York, 1982) pp. 512, 496, 489.Google Scholar
  35. 35.
    A. K. Lahiri andT. Banerjee,Brit. J. Appl. Phys. 16 (1965) 1217.CrossRefGoogle Scholar
  36. 36.
    D. J. H. Cockayne, M. L. Jenkins andI. L. F. Ray,Philos. Mag. 24 (1971) 1383.CrossRefGoogle Scholar
  37. 37.
    J. D. Eshelby, in “Physics of Metals, Defects”, Vol. 2, edited by P. B. Hirsh (Cambridge University Press, Cambridge, 1975) p. 1.Google Scholar
  38. 38.
    I. Saxl,Czech. J. Phys. B,14 (1964) 381.CrossRefGoogle Scholar
  39. 39.
    H. W. King,J. Mater. Sci. 1 (1966) 79.CrossRefGoogle Scholar
  40. 40.
    M. T. Hopkin, H. Persey andM. F. Markhan,Z. Metallkde 61 (1970) 535.Google Scholar
  41. 41.
    C. T. K. Kuo andR. J. Arsenault,Mater. Sci. Engng 30 (1977) 65.CrossRefGoogle Scholar
  42. 42.
    L. M. Clarebrough, M. E. Hargreaves andM. H. Loretto,Proc. R. Soc. London, Ser. A 275 (1960) 363.Google Scholar
  43. 43.
    F. Haessner andJ. Schmidt,Scripta Metall. 22 (1988) 1917.CrossRefGoogle Scholar
  44. 44.
    D. Kuhlmann-Wilsdorf, in “Physical Metallurgy”, 2nd Edn, edited by R. W. Cahn (North Holland, Amsterdam, London, 1970) p. 827.Google Scholar
  45. 45.
    A. Varschavsky andE. Donoso,Metall. Trans. 15A (1984) 1999.CrossRefGoogle Scholar
  46. 46.
    A. Varschavsky,J. Mater. Sci. 20 (1985) 3881.CrossRefGoogle Scholar
  47. 47.
    Idem, in “Advanced Materials Conference”, edited byJ. G. Morse (The Metallurgy Society Inc., Warrendale, PA, 1987) p. 33.Google Scholar
  48. 48.
    J. L. Bocquet, G. Brébec andY. Limoge, in “Physical Metallurgy”, 3rd Edn, edited by R. W. Cahn and P. Hassen (North Holland, Amsterdam, Oxford, New York, Tokyo, 1983) p. 462.Google Scholar
  49. 49.
    F. Seitz,Adv. Phys. 1 (1952) 43.CrossRefGoogle Scholar
  50. 50.
    M. A. Meyers andK. K. Chawla, “Mechanical Metallurgy” (Prentice-Hall, Englewood Cliffs, NJ, 1984) p. 219.Google Scholar
  51. 51.
    T. S. Hutchison andD. C. Baird, “The Physics of Engineering Solids” (Wiley, New York, London, 1963) p. 77.Google Scholar
  52. 52.
    Jin-Ichi Takamura, in “Physical metallurgy”, 2nd Edn, edited by R. W. Cahn (North Holland, Amsterdam, London, 1970) p. 892.Google Scholar
  53. 53.
    P. G. Shewmon, “Transformation in Metals”, 1st Edn, (McGraw-Hill, New York, 1969) p. 65.Google Scholar
  54. 54.
    R. D. Doherty,Met. Sci. 16 (1982) 1.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • A. Varschavsky
    • 1
  1. 1.Facultad de Ciencias Físicas y Matemáticas, Instituto de Investigaciones y Ensayes de Materiales (IDIEM)Universidad de ChileSantiagoChile

Personalised recommendations