Journal of Materials Science

, Volume 26, Issue 13, pp 3565–3574 | Cite as

Development of solidification microstructures in a fibre reinforced alloy

  • Q. F. Li
  • D. G. McCartney
  • A. M. Walker


The solidification behaviour of a fibre reinforced Al-6 wt% Cu alloy, containing 30 vol% of 3 μm diameter, semi-continuous, aligned alumina fibres has been studied. Results are presented to show the influence of fibres on the microstructural development of and microsegregation in the matrix during freezing. The effect of total solidification time, θt, on solidification behaviour was examined for 1<θt<520 S. By using interrupted solidification experiments microstructural development was studied in detail. It was found that α-Al begins to grow within interfibre regions, and grows towards the Al2O3 fibres, avoiding them where possible. Consequently fibres are located in the last regions to solidify. When θt>10 s the final microstructure is non-dendritic, and CuAl2 is located predominantly at the fibre-matrix interface. When θt ≃ 1 s it was observed that the final microstructure is dendritic with a periodic segregation pattern, and the CuAl2 is more dispersed. The matrix composition becomes more uniform, and the minimum matrix composition rises as θt increases. The growth and microsegregation are analysed and discussed using simple semi-analytical models. The implications are that fibres significantly influence solidification behaviour if λfs<1, where λf is the average interfibre spacing and λs the secondary dendrite arm spacing which would develop in the unreinforced alloy.


Final Microstructure Solidification Behaviour Matrix Composition Solidification Microstructure Unreinforced Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Kurz andD. J. Fisher, “Fundamentals of Solidification” (Trans Tech, Aedermansdorf, 1986) pp. 65–96.Google Scholar
  2. 2.
    R. Trivedi andK. Somboonsuk,Mater. Sci. Engng 65 (1984) 65.CrossRefGoogle Scholar
  3. 3.
    M. C. Flemings, “Solidification Processing” (McGraw- Hill, New York, 1974) p. 150.Google Scholar
  4. 4.
    K. P. Young andD. H. Kirkwood,Met. Trans. A6 (1975) 197.CrossRefGoogle Scholar
  5. 5.
    W. Kurz andD. J. Fisher,Acta Metall. 29 (1981) 11.CrossRefGoogle Scholar
  6. 6.
    J. D. Hunt, in Proceedings Conference on Solidification and Casting of Metals, Sheffield, July 1977 (Metals Society, London, 1979) p. 3.Google Scholar
  7. 7.
    M. Rappaz andPH. Thévoz,Acta Metall. 35 (1987) 1487.CrossRefGoogle Scholar
  8. 8.
    Idem., ibid.,35 (1987) 2929.CrossRefGoogle Scholar
  9. 9.
    D. H. Kirkwood,Mat. Sci. Engng 65 (1984) 101.CrossRefGoogle Scholar
  10. 10.
    T. F. Bower, H. D. Brody andM. C. Flemings,Trans. AIME 236 (1966) 624.Google Scholar
  11. 11.
    M. H. Burden andJ. D. Hunt,J. Cryst. Growth 22 (1974) 99.CrossRefGoogle Scholar
  12. 12.
    P. N. Quested andM. McLean,Mater. Sci. Engng 65 (1984) 171.CrossRefGoogle Scholar
  13. 13.
    T. W. Clyne andJ. F. Mason,Met. Trans. 18A (1987) 1519.CrossRefGoogle Scholar
  14. 14.
    C. R. Cook, D. I. Yun, andW. H. Hunt Jr., in “Cast Reinforced Metal Composites” (American Society of Metals, Metals Park, Ohio, 1988) p. 195.Google Scholar
  15. 15.
    J. A. Cornie, A. Mortensen, M. N. Gungor andM. C. Flemings, in Proceedings of the 5th International Conference on Composite Materials, edited by W. C. Harrigan, J. Strife and A. K. Dhingra (TMS, Warrendale, 1986) 809.Google Scholar
  16. 16.
    A. Mortensen, M. N. Gungor, J. A. Cornie andM. C. Flemings,J. Met. 38 (1986) 30.Google Scholar
  17. 17.
    J. A. Cornie, A. Mortensen andM. C. Flemings, in Proceedings of the 6th International Conference on Composite Materials, edited by F. L. Matthews, N. C. R. Buskell, J. M. Hodginson, and J. Morton (Elsevier Applied Science, London, 1987) p. 2.297.Google Scholar
  18. 18.
    A. Mortensen, J. A. Cornie andM. C. Flemings,Met. Trans. 19A (1988) 133.Google Scholar
  19. 19.
    J. A. Sekhar andR. Trivedi,Mater. Sci. Engng A114 (1989) 133.CrossRefGoogle Scholar
  20. 20.
    G. R. Cappelman, J. F. Watts andT. W. Clyne,J. Mater. Sci. 20 (1985) 2159.CrossRefGoogle Scholar
  21. 21.
    Data Sheet on Safimax (ICI Chemical and Polymers Group, Runcorn, UK, 1987).Google Scholar
  22. 22.
    R. T. De Hoff andF. N. Rhines, “Quantitative Microscopy” (McGraw-Hill, New York, 1968) p. 283.Google Scholar
  23. 23.
    M. Gündüz andJ. D. Hunt,Acta Metall. 33 (1985) 1651.CrossRefGoogle Scholar
  24. 24.
    J. D. Hunt andD. G. McCartney,ibid. 35 (1987) 89.CrossRefGoogle Scholar
  25. 25.
    T. W. Clyne andW. Kurz,Met. Trans. 12A (1981) 965.CrossRefGoogle Scholar
  26. 26.
    H. D. Brody andM. C. Flemings,Trans. AIME 236 (1966) 615.Google Scholar
  27. 27.
    M. N. Gungor, PhD Thesis, Massachusetts Institute of Technology (1986).Google Scholar
  28. 28.
    R. Trumper andV. Scott, in Proceedings of the 3rd European Conference on Composite Materials, edited by A. R. Bunsell, P. Lamicq and A. Masiah (Elsevier Applied Science, London, 1989) p. 139.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Q. F. Li
    • 1
  • D. G. McCartney
    • 1
  • A. M. Walker
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of LiverpoolLiverpoolUK
  2. 2.ICI Advanced MaterialsThe Heath, RuncornUK

Personalised recommendations