Journal of Materials Science

, Volume 26, Issue 13, pp 3553–3564 | Cite as

Sintering and characterization of Bi4Ti3O12 ceramics

  • C. Jovalekic
  • Lj. Atanasoska
  • V. Petrovic
  • M. M. Ristic


Polycrystalline ferroelectric Bi4Ti3O12 ceramics have been prepared by the method of reactive liquid phase sintering. The sintering behaviour of the Bi2O3-TiO2 composite was examined by plotting the isothermal densification curves. The results indicate that the starting oxides are involved in the reaction even at temperatures lower than or equal to 800°C, but the reaction advances at a very slow rate. Above solidus, the liquid phase promotes an extended reaction. Saturation observed in two densification curves, at 875 and 1100°C demonstrate that the reaction proceeds by two steps. A completion of the Bi4Ti3O12 formation occurs after 60 min of sintering at 1100°C. Optical micrographs of sintered bismuth titanate ceramics show randomly oriented ferroelectric grains separated by a paraelectric intergranular layer. The Bi4Ti3O12 crystallites exhibit a platelike morphology, similar in the appearance to mica, as evidenced by scanning electron micrographs. Isothermal annealing (750 to 950°C) does not affect the microstructure and electric properties of sintered bismuth titanate. The considerable value of dielectric permittivity and the appearance of hysteresis have been correlated to the presence of oxygen vacancies within the pseudotetragonal structure of Bi4Ti3O12. The oxygen vacancies are preferentially sited in the vicinity of bismuth ions as evidenced by X-ray photoemission data. XPS and AES measurements confirm that the surface concentration of cations comprising the Bi4Ti3O12 ceramics does not deviate from the nominal bulk composition.


Oxygen Vacancy Dielectric Permittivity Liquid Phase Sinter Isothermal Annealing Reactive Liquid Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Aurivillius,Arkiv Kemi 1 (1950) 499.Google Scholar
  2. 2.
    J. F. Dorrian, R. E. Newnham, D. K. Smith andM. I. Kay,Ferroelectrics 3 (1971) 17.CrossRefGoogle Scholar
  3. 3.
    G. W. Taylor, S. A. Keneman, A. Miller andS. E. Cummins,ibid. 2 (1971) 11.CrossRefGoogle Scholar
  4. 4.
    M. M. Hopkins andA. Miller,ibid. 1 (1970) 37.CrossRefGoogle Scholar
  5. 5.
    A. Fouskova andL. E. Cross,J. Appl. Phys. 41 (1970) 2834.CrossRefGoogle Scholar
  6. 6.
    G. W. Taylor,Ferroelectrics 1 (1970) 79.CrossRefGoogle Scholar
  7. 7.
    S. Ehara, K. Muramatsu, M. Shimazu, J. Tanaka, M. Tsukioka, Y. Mori, T. Hattori andH. Tamura,Jpn J. Appl. Phys. 20 (1981) 877.CrossRefGoogle Scholar
  8. 8.
    E. C. Subbarao,J. Phys. Chem. Solids 23 (1962) 665.CrossRefGoogle Scholar
  9. 9.
    E. I. Speranskaya, I. S. Rez, L. V. Kozlova, V. M. Skorikov andV. I. Slovov,Neorganicheskie Materiali 1 (1965) 232.Google Scholar
  10. 10.
    E. V. Sinjakov, E. F. Dudnik, V. M. Duda, V. A. Podolski andM. A. Gorfunkel,Fizika tverdogo tela 16 (1974) 1515.Google Scholar
  11. 11.
    D. Briggs andM. P. Seah (Eds) “Practical Surface Analysis By Auger and X-Ray Photoelectron Spectroscopy” (John Wiley, New York, 1983).Google Scholar
  12. 12.
    T. Takenaka andK. Sakata,Jpn J. Appl. Phys. 19 (1980) 31.CrossRefGoogle Scholar
  13. 13.
    C. B. Sawyer andC. H. Tower,Phys. Rev. 35 (1930) 269.CrossRefGoogle Scholar
  14. 14.
    C. D. Wagner, W. M. Riggs, L. E. Davis andJ. F. Moulder in G. E. Muilenberg (Ed.), “Handbook of X-Ray Photoelectron Spectroscopy” (Perkin-Elmer, Physical Electronic Division, Eden Prairie, MN, 1978).Google Scholar
  15. 15.
    L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, R. E. Weber, “Handbook of Auger Electron Spectroscopy” (PHI, Eden Prairie, MN, 1976).Google Scholar
  16. 16.
    V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan andA. Goswami,J. Electron. Spectrosc. Relat. Phenom. 25 (1982) 181–189.CrossRefGoogle Scholar
  17. 17.
    V. S. Dharmadhikari andA. Goswami,J. Vac. Sci. Technol. A1 (1983) 383–387.CrossRefGoogle Scholar
  18. 18.
    G. B. Hoflund, H.-L. Yin, A. L. Grogan, Jr., D. A. Asbury, H. Yoneyama, O. Ikeda andH. Tamura,Langmuir 4 (1988) 346.CrossRefGoogle Scholar
  19. 19.
    J. M. McKay andV. E. Henrich,Surf. Sci. 137 (1984) 463.CrossRefGoogle Scholar
  20. 20.
    G. Rocker andW. Gopel,ibid. 181 (1987) 530.CrossRefGoogle Scholar
  21. 21.
    O. Kubaschewski andC. B. Alcock, “Metallurgical Thermochemistry”, 5th Edn (Pergamon, Oxford, 1979).Google Scholar
  22. 22.
    B. Folkesson andP. Sundberg,Spectrosc. Lett. 20 (1987) 193–200.CrossRefGoogle Scholar
  23. 23.
    J. H. Scofield,J. Electron. Spectrosc. Relat. Phenom. 8 (1976) 129–137.CrossRefGoogle Scholar
  24. 24.
    S. E. Cummins andL. E. Cross,J. Appl. Phys. 39 (1968) 2268.CrossRefGoogle Scholar
  25. 25.
    T. Kimura, T. Kanazawa andT. Yamaguchi,J. Amer Ceram. Soc. 66 (1983) 597.CrossRefGoogle Scholar
  26. 26.
    S. Ikegami andI. Ueda,Jpn J. Appl. Phys. 13 (1974) 1572.CrossRefGoogle Scholar
  27. 27.
    V. A. Podolski, E. F. Dudnik andT. M. Stolpakova,Izv. Akad. Nauk USSR 39 (1975) 1041.Google Scholar
  28. 28.
    H. Watanabe, T. Kimura andT. Yamaguchi,J. Amer. Ceram. Soc. 72 (1989) 289.CrossRefGoogle Scholar
  29. 29.
    W. Xiaoli andY. Xi,Jpn J. Appl. Phys. 24 (Suppl. 24-2) (1985) 1033.CrossRefGoogle Scholar
  30. 30.
    J. Zhi-Cheng, An Li-Dun andY. Yuan-Gen,Appl. Surf. Sci. 24 (1985) 134.CrossRefGoogle Scholar
  31. 31.
    A. A. Zavyalova andR. M. Imamov,Sov. Phys.- Crystallogr. 13 (1968) 37 (Engl. transl.).Google Scholar
  32. 32.
    E. M. Levin andR. S. Roth,J. Res. NBS 68A (1964) 189.CrossRefGoogle Scholar
  33. 33.
    T. N. Taylor, C. T. Campbell, J. W. Rogers, Jr., W. P. Ellis andJ. M. White,Surf. Sci. 134 (1983) 529–546.CrossRefGoogle Scholar
  34. 34.
    E. C. Subbarao,Phys. Rev. 122 (1961) 804.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • C. Jovalekic
    • 1
  • Lj. Atanasoska
    • 2
  • V. Petrovic
    • 3
  • M. M. Ristic
    • 4
  1. 1.Center for Multidisciplinary StudyUniversity of BelgradeBelgradeMacedonia
  2. 2.Institute of Technical Sciences of Serbian Academy of Sciences and ArtsBelgradeMacedonia
  3. 3.The Faculty of Pedagogy and TechniquesCacakMacedonia
  4. 4.Committee for Physical ChemistrySerbian Academy of Sciences and ArtsBelgradeMacedonia

Personalised recommendations