Journal of Materials Science

, Volume 26, Issue 13, pp 3511–3516 | Cite as

Crystallizability and sinterability of a precursor prepared by oxalate method in ethanol solution

  • Guo Gongyi
  • Ni Zhi Fang
  • Chen Yuli


A precursor of yttria-stabilized zirconia (YSZ) powder was prepared by the oxalate method in ethanol solution. The crystallizability and sinterability of the precursor were studied. The crystallizability of the precursor depends on preparation conditions, especially acidity. The final acidity of the solution from which the precursor is produced and the temperature at which the precursor is calcined can strongly influence the crystalline phase composition of the resultant powder, and can, in turn, limit the ability of a sintering compact to reach high density. The YSZ powder which results from calcining the precursor without milling the calcined powder for a long time, may be a less-agglomerated powder with a crystallite size of about 9 nm and a specific surface area of 46.3 m2g−1. A full tetragonal zirconia polycrystal with 99% theoretical density can be obtained from the highly reactive powder by simple cold-pressing followed by pressureless sintering in air at temperatures as low as 1300 °C.


Polymer Zirconia Acidity Specific Surface Oxalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Dubois, D. Ruffier andP. Odier,J. Amer. Ceram. Soc. 72 (1989) 713.CrossRefGoogle Scholar
  2. 2.
    J. M. Wu andC. H. Wu,J. Mater. Sci. 23 (1988) 3290.CrossRefGoogle Scholar
  3. 3.
    P. Duran, P. Recio, J. R. Jurado, C. Pascual andC. Moure,ibid. 23 (1988) 4349.CrossRefGoogle Scholar
  4. 4.
    J. G. Duh andJ. J. Hwung,Mater. Chem. Phys. 20 (1988) 409.CrossRefGoogle Scholar
  5. 5.
    Rajendran, H. J. Rossell andJ. V. Sanders,J. Mater. Sci. 24 (1989) 1195.CrossRefGoogle Scholar
  6. 6.
    G. Y. Guo, Y. L. Chen andY. Li, in “Production and Processing of Fine Particles”, edited by A. J. Plumpton (Pergamon, New York, 1988) p. 627.Google Scholar
  7. 7.
    T. Sakuma, Y. I. Yoshizawa andH. Suto,J. Mater. Sci. 20 (1985) 2399.CrossRefGoogle Scholar
  8. 8.
    W. J. Dawson,Amer. Ceram. Soc. Bull. 67 (1988) 1673.Google Scholar
  9. 9.
    R. P. Ingel andD. Lewis III,J. Amer. Ceram. Soc. 69 (1986) 325.CrossRefGoogle Scholar
  10. 10.
    E. P. Butler,Mater. Sci. Technol. 1 (1985) 417.CrossRefGoogle Scholar
  11. 11.
    M. Rühle, N. Claussen andA. H. Heuer, in “Science and Technology of Zirconia II”, edited by N. Claussen, M. Rühle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 352.Google Scholar
  12. 12.
    T. Masaki,J. Amer. Ceram. Soc. 69 (1986) 638.CrossRefGoogle Scholar
  13. 13.
    H. U. Kessel, H. Kolaska andK. Dreyer,Powder Metall. Int. 20 (1988) 35.Google Scholar
  14. 14.
    C. M. Phillippi andK. S. Mazdiyasni,J. Amer. Ceram. Soc. 54 (1971) 254.CrossRefGoogle Scholar
  15. 15.
    W. H. Rhodes,ibid. 64 (1981) 19.CrossRefGoogle Scholar
  16. 16.
    M. A. C. G. Van De Graaf, J. H. H. Ter Maat andA. J. Burggraaf,J. Mater. Sci. 20 (1985) 1407.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Guo Gongyi
    • 1
  • Ni Zhi Fang
    • 2
  • Chen Yuli
    • 3
  1. 1.Department of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Applied PhysicsShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Chemistry and Chemical EngineeringShanghai University of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations