Journal of Materials Science

, Volume 26, Issue 13, pp 3503–3510 | Cite as

Nanocomposites in mullite-ZrO2 and mullite-TiO2 systems synthesised through alkoxide hydrolysis gel routes: microstructure and fractography

  • Ph. Colomban
  • L. Mazerolles


The sol-gel process allows preparation of very homogeneous and reactive monolithic, optically clear gels. Low-temperature thermal treatments (700–1000 °C) lead to amorphous optically clear samples (“glass”). Amorphous mullite compositions (0.4Al2O3-0.6SiO2 to 0.8Al2O3-0.2SiO2) retain large amounts of Ti and Zr elements. The crystallization has been studied by differential thermal analysis, dilatometry, X-ray and electron diffraction and Raman scattering. The nucleation begins above 1000 °C with the departure of the last protonic species, the amorphous matrix being completely crystallized only above 1400 °C. The addition of Zr and Ti elements leads to a homogeneous nucleation of phases with a composition close to ZrO2 and Al2Ti3O9 (EDX analysis) above the solubility limit. TEM and SEM analyses show that the precipitate size remains submicrometric over a wide temperature range (1000–1400 °C) and consequently glass-like mechanical properties, as well as toughening effects, caused by the presence of nanoprecipitates, are observed.


SiO2 Electron Diffraction Differential Thermal Analysis Alkoxide Raman Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. C. Klein (Ed.), “Sol-gel Technology” (Noyes, NJ, 1988).Google Scholar
  2. 2.
    Ph. Colomban,Ceram. Int. 15 (1989) 23–50.CrossRefGoogle Scholar
  3. 3.
    Idem., J. Mater. Sci. 24 (1989) 3002.CrossRefGoogle Scholar
  4. 4.
    Idem., Ibid. 24 (1989) 3011.CrossRefGoogle Scholar
  5. 5.
    Idem., “Proceedings of the 2nd International Conference on Powder Science and Technology”, Berchtesgaden 12–14 October 1988, edited by G. D. Messing, E. R. Fuller Jr and H. Hausner (American Ceramic Society, Westerville, Ohio, 1989) pp. 85–92.Google Scholar
  6. 6.
    Ph. Colomban andL. Mazerolles,J. Mater. Sci. Lett. 9 (1990) 1077.CrossRefGoogle Scholar
  7. 7.
    W. E. Cameron,Amer. Mineral. 62 (1977) 745.Google Scholar
  8. 8.
    H. Schneider,Ceram. Int. 13 (1987) 77.CrossRefGoogle Scholar
  9. 9.
    R. F. Davis andJ. A. Pask, in “High Temperature Oxides”, edited by A. M. Alper (Academic Press, 1971) pp. 37–76.Google Scholar
  10. 10.
    S. Prochazka, J. S. Wallace andN. Claussen,J. Amer. Ceram. Soc. 66 (1983) C. 125.CrossRefGoogle Scholar
  11. 11.
    A. Makishima, H. Ooshaski, M. Wakakawa, T. Shimohira andK. Kotami,J. Non-Cryst. Solids 42 (1980) 545.CrossRefGoogle Scholar
  12. 12.
    H. Okamura, E. A. Barringer andH. K. Bowen,J. Mater. Sci. 24 (1989) 1867.CrossRefGoogle Scholar
  13. 13.
    Ph. Colomban, “Ceramics Today, Tomorrow's Ceramics”, edited by P. Vincenzini (Elsevier) to be published.Google Scholar
  14. 14.
    I. M. Low andR. McPherson,J. Mater. Sci. 24 (1989) 926.CrossRefGoogle Scholar
  15. 15.
    Idem., ibid,24 (1989) 951.CrossRefGoogle Scholar
  16. 16.
    K. Okada andN. Otsuka,J. Amer. Ceram. Soc. 69 (1986) 652.CrossRefGoogle Scholar
  17. 17.
    Idem., Sci. Ceram. 14 (1989) 497.Google Scholar
  18. 18.
    S. Sen andS. Thiagarajan,Ceram. Int. 14 (1988) 77.CrossRefGoogle Scholar
  19. 19.
    P. McMillan andB. Piriou,J. Non-Cryst. Solids 53 (1982) 279.CrossRefGoogle Scholar
  20. 20.
    I. W. Brown, K. J. D. McKenzie, M. E. Bowden andR. H. Meinhold,J. Amer. Ceram. Soc. 68 (1985) 298.CrossRefGoogle Scholar
  21. 21.
    O. Yamaguchi andY. Mukaida,ibid. 72 (1989) 330.CrossRefGoogle Scholar
  22. 22.
    H. Knoll,Naturwiss. 48 (1961) 601.CrossRefGoogle Scholar
  23. 23.
    S. P. S. Porto, P. A. Fleury andT. C. Damen,Phys. Rev. 154 (1964) 522.CrossRefGoogle Scholar
  24. 24.
    U. Balachandran andN. G. Eror,J. Solid State Chem. 42 (1982) 276.CrossRefGoogle Scholar
  25. 25.
    C. A. Melendres, A. Narayanasmi, V. A. Maroni andR. W. Siegel,J. Mater. Res. 4 (1989) 1246.CrossRefGoogle Scholar
  26. 26.
    International Centre for Diffraction Data no. 9-182 (FeTiO5) and 26–40 (Al2TiO5).Google Scholar
  27. 27.
    D. Goldberg, Thesis, Paris (1968).Google Scholar
  28. 28.
    P. A. Brugger andA. Mocellin,J. Mater. Sci. 21 (1986) 4431.CrossRefGoogle Scholar
  29. 29.
    T. Y. Pan, R. E. Robertson andF. E. Filisko,ibid. 23 (1988) 2553.CrossRefGoogle Scholar
  30. 30.
    Idem., ibid. 24 (1989) 3635.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Ph. Colomban
    • 1
  • L. Mazerolles
    • 2
  1. 1.Groupe de Chimie du Solide, LPMC-U.A.1254 (CNRS)Ecole PolytechniquePalaiseauFrance
  2. 2.Laboratoire de Chimie Appliquée de l'Etat SolideCECM-CNRSVitry sur SeineFrance

Personalised recommendations