Journal of Materials Science

, Volume 26, Issue 13, pp 3491–3496 | Cite as

Pressureless-sintered and HIPed SiC-TiB2 composites from SiC-TiO2-B4C-C powder compacts

  • Toshihiko Tani
  • Shigetaka Wada


Dense SiC-TiB2 composites with prescribed compositions were obtained through pressureless sintering of SiC-TiO2-B4C-C powder compacts. During the process, TiO2, B4C and C reacted to form TiB2, followed by the consolidation of SiC matrix with the aid of excess B4C and C. The effects of the composition of the starting powders on the final density were investigated and the mechanical properties of the composite were evaluated. The sintered body with additional HIPing at 1900 °C exhibited the average four-point flexural strength of more than 700 MPa at both 20 and 1400 °C.


Polymer TiO2 Mechanical Property Powder Compact Flexural Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. H. McMurtry, W. G. D. Boecker, S. G. Seshadri, J. S. Zanghi andJ. E. Garnier,Amer. Ceram. Soc. Bull. 66 (1987) 325.Google Scholar
  2. 2.
    R. Jimbou, K. Takahashi andT. Kosugi,Adv. Ceram. Mater.,1 (1986) 341.CrossRefGoogle Scholar
  3. 3.
    H. Endo, K. Tanemoto andH. Kubo, in Sintering '87, Vol. 2, edited by S. Somiya, M. Shimada, M. Yoshimura and R. Watanabe (Elsevier Science Publishers, Essex, UK, 1988) p. 1052.Google Scholar
  4. 4.
    H. R. Baumgartner andR. A. Steiger,J. Amer. Ceram. Soc. 67 (1984) 207.CrossRefGoogle Scholar
  5. 5.
    J. J. Kim andC. H. McMurtry,Ceram. Eng. Sci. Proc. 6 (1985) 1313.CrossRefGoogle Scholar
  6. 6.
    S. Prochazka, C. A. Johnson andR. A. Giddings, Proceedings of the International Symposium of Factors in Densification and Sintering of Oxide and Non-oxide Ceramics (Gakujutu Bunken Fukyu-Kai, Tokyo, Japan, 1979) p. 366.Google Scholar
  7. 7.
    S. Prochazka,Spec. Ceram. 6 (1975) 171.Google Scholar
  8. 8.
    Y. Miyamoto, Y. C. Hyun, Y. Takano, O. Yamada andM. Koizumi,J. Jpn Soc. Powder Metall. 35 (1988) 651.CrossRefGoogle Scholar
  9. 9.
    T. Tani andS. Wada,Nippon Seramikkusu Kyokai Gakujutu Ronbunshi 97 (1989) 1195.CrossRefGoogle Scholar
  10. 10.
    T. Tani andS. Wada,J. Mater. Sci. Lett. 9 (1990) 22.CrossRefGoogle Scholar
  11. 11.
    S. Kudo andM. Ozawa,Jpn J. Appl. Phys. 28 Supplement 28-2 (1989) 184.CrossRefGoogle Scholar
  12. 12.
    K. Niihara, R. Morena andD. P. H. Hasselman,J. Mater. Sci. Lett. 1 (1982) 13.CrossRefGoogle Scholar
  13. 13.
    T. Nose andT. Fujii,J. Amer. Ceram. Soc. 71 (1988) 328.CrossRefGoogle Scholar
  14. 14.
    Y. Murata andR. H. Smoak, Proceedings of the International Symposium of Factors in Densification and Sintering of Oxide and Non-oxide Ceramics (Gakujutu Bunken Fukyu-Kai, Tokyo, Japan, 1979) p. 382.Google Scholar
  15. 15.
    W. Boecker andH. Hausner,Powder Metall. Int. 10 (1978) 87.Google Scholar
  16. 16.
    T. Hase andH. Suzuki,Yogyo-Kyokai-Shi 86 (1978) 12.Google Scholar
  17. 17.
    G. K. Watson, T. J. Moore andM. L. Millard,Amer. Ceram. Soc. Bull. 64 (1985) 1253.Google Scholar
  18. 18.
    K. Homma, T. Tatsuno andH. Okada,J. Jpn Soc. Powder Metall. 34 (1987) 66.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Toshihiko Tani
    • 1
  • Shigetaka Wada
    • 1
  1. 1.Toyota Central Research and Development Laboratories, Inc.AichiJapan

Personalised recommendations