Journal of Materials Science

, Volume 26, Issue 13, pp 3477–3480 | Cite as

Internal friction in Se-Sb glasses

  • A. H. Khafagy
  • M. Abo-Ghazala
  • M. M. El-Zaidia
  • A. A. Ammar


The internal friction,O−1, as a function of temperature has been investigated for Se100−xSbx systems, wherex=7.5, 12.5 and 17.5 at%, using the magnetostrictive pulse-echo method in the range of vibrational frequencies 50–100 kHz. Two well-defined peaks appeared, characterizing this glass. The first peak covers the temperature range 320–330 K, where the peak position has been shifted to the higher temperature as Sb content increases. This peak indicates the glass transition temperature,Tg, of the tested glassy samples. The second peak was detected in the temperature range 360–378 K. The position of this peak has been shifted to a lower temperature as Sb content increases. This peak is attributed to the crystallization temperature,Tc, of each glassy sample tested. The peak height of both of the above peaks decreased as the Sb content increased. Also, the appearance of these two peaks was affected by annealing.


Polymer Crystallization Transition Temperature Glass Transition Glass Transition Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Povov,Phys. Chem. Glasses 19 (1978) 43.Google Scholar
  2. 2.
    O. Yano andY. Wada,J. Polym. Sci. A-2 9 (1971) 669.CrossRefGoogle Scholar
  3. 3.
    J. M.Crissman, J. A. Sauer andA. E. Woodward,ibid. (1964) 5075.Google Scholar
  4. 4.
    G. E. Roberts andD. F. T. White, “The Physics of Glassy Polymers”, edited by R. N. Haward (Applied Science, London, 1973) p. 153.CrossRefGoogle Scholar
  5. 5.
    K. S. Glory andW. A. Philips,Phil. Mag. B47 (1983) 655.Google Scholar
  6. 6.
    J. Y. Duquesne andG. Bellessa,J. Non-Cryst. Solids 81 (1986) 319.CrossRefGoogle Scholar
  7. 7.
    R. J. Patterson andM. J. Bran, Presented at theElectrochemical Society Meeting, Cleveland, OH, May 1966.Google Scholar
  8. 8.
    A. Giridhar, P. S. D. Narsimham andS. Mahderan,J. Non-Cryst. Solids 37 (1980) 165.CrossRefGoogle Scholar
  9. 9.
    J. Diximier andJ. F. Sadoc, “Metallic Glasses” (American Society for Metals, Metals Park, Ohio, 1978) p. 97.Google Scholar
  10. 10.
    T. Murayama, “Dynamic Mechanical Analysis of Polymeric Material”, Vol. 1 (Elsevier, Amsterdam, 1978) pp. 560–61.Google Scholar
  11. 11.
    S. R. Elliott, “Physics of Amorphous Materials” (Longman, New York, 1983) p. 13.Google Scholar
  12. 12.
    J. F. W. Bell andJ. M. Pelmore,J. Phys. Lett. E Sci. Instrum. 10 (1977) 1945.Google Scholar
  13. 13.
    A. H. Khafagy, PhD thesis, Chelsea College, London University (1985).Google Scholar
  14. 14.
    J. F. W. Bell, “A Solid Acoustic Thermometer”, Ultrasonics, Vol. 6, No. 1 (1968) pp. 11–14.CrossRefGoogle Scholar
  15. 15.
    K. R. Chaplain, PhD Thesis, University of Aston in Birmingham (1980).Google Scholar
  16. 16.
    M. M. El-Zaidia, A. El-Shafi, A. A. Ammar andM. Abo-Ghazala,Thermochem. Acta 116 (1987) 35.CrossRefGoogle Scholar
  17. 17.
    M. Takayanagi, “Viscoelastic Properties of Crystalline Polymers”, in Proceedings of the 4th International Congress of Rheology (Interscience, New York, 1965) p. 161.Google Scholar
  18. 18.
    R. W. Gray andN. G. McCrum,J. Polym. Sci. A-2 7 (1969) 1329.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • A. H. Khafagy
    • 1
  • M. Abo-Ghazala
    • 1
  • M. M. El-Zaidia
    • 1
  • A. A. Ammar
    • 1
  1. 1.Physics Department, Faculty of ScienceMonoufia UniversityShebin EI-KoomEgypt

Personalised recommendations