Journal of Materials Science

, Volume 26, Issue 13, pp 3463–3476 | Cite as

Formation of silicon carbide whiskers and their microstructure

  • A. Chrysanthou
  • P. Grieveson
  • A. Jha


Thermodynamic and kinetic conditions for the formation of SiC whiskers are established. The mechanism of their nucleation and growth are studied and, on this basis, the magnitude of the thermally activated barrier is determined from the rate of reduction data. The microstructures of whiskers are analysed and the role of interfacial tension between the nuclei and impurities, and the metallic iron catalyst is studied in relation to the formation of SiC whiskers. A possible reason for polytypism in SiC whiskers is also proposed.


Iron Polymer Silicon Microstructure Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Krishna andA. R. Verma,Z. Kristallogr. 121 (1965) 36.CrossRefGoogle Scholar
  2. 2.
    A. R. Verma andP. Krishna, in “Polymorphism and Polytypism in Crystals” (Wiley, New York, 1966) p. 13.Google Scholar
  3. 3.
    D. Pandey andP. Krishna, in “Silicon Carbide 1973” (University of South Carolina Press, Columbia, SC, 1974) p. 198.Google Scholar
  4. 4.
    L. V. Azaroff, in “dIntroduction to Solids” (Tata-McGrawHill, Bombay, 1977) p. 362.Google Scholar
  5. 5.
    W. Hume-Rothery andG. V. Raynor, in “The Structure of Metals and Alloys” (Institute of Metals, London, 1962) p. 186.Google Scholar
  6. 6.
    H. Jagodzimski andH. Arnold, in “Silicon Carbide a High Temperature Semiconductor”, Proceedings of the Conference on Silicon Carbide, Boston, MA, edited by J. R. O'Connor and J. Smittens (Pergamon Press, Oxford, 1960) p. 137.Google Scholar
  7. 7.
    A. E. Heuer, G. A. Fryburg, L. U. Ogbuji andT. E. Mitchell,J. Amer. Ceram. Soc. 61 (1976) 406.CrossRefGoogle Scholar
  8. 8.
    T. E. Mitchell, L. U. Ogbuji andA. H. Heuer,ibid. 61 (1976) 412.CrossRefGoogle Scholar
  9. 9.
    S. Shinozaki andK. R. Kingman,Acta Metall. 26 (1978) 769.CrossRefGoogle Scholar
  10. 10.
    N. Setaka andK. Ejiri,J. Amer. Ceram. Soc. 52 (1969) 60.CrossRefGoogle Scholar
  11. 11.
    S. Amelinckx andG. Strumane, in “Silicon Carbide a High Temperature Semiconductor”, Proceedings of the Conference on Silicon Carbide, Boston, MA, edited by J. R. O'Connor and J. Smittens (Pergamon Press, Oxford, 1960) p. 162.Google Scholar
  12. 12.
    J. G. Antonopoulos, J. Stoemenos, C. Jaussand andJ. Margail,J. Mater. Sci. Lett. 8 (1989) 1374.CrossRefGoogle Scholar
  13. 13.
    L. U. Ogbuji, T. E. Mitchell andA. H. Heuer,J. Amer. Ceram. Soc. 64 (1981) 91.CrossRefGoogle Scholar
  14. 14.
    Idem., ibid. 64 (1981) 100.CrossRefGoogle Scholar
  15. 15.
    K. Okamura, M. Sato, T. Matsuzawa andY. Hasegawa, in “Ultrastructure Processing of Advanced Ceramics”, edited by J. D. MacKenzie and D. R. Uhlrich (Wiley, New York, 1987) p. 501.Google Scholar
  16. 16.
    P. F. Knippenberg,Philips Res. Rep. 18 (1963) 161.Google Scholar
  17. 17.
    Steven R. Nutt,J. Amer. Ceram. Soc. 71 (1988) 149.CrossRefGoogle Scholar
  18. 18.
    J. G. Lee andI. B. Cutler,Ceram. Bull. 54 (1975) 195.Google Scholar
  19. 19.
    J. V. Milewski, F. D. Gac, J. J. Petrovic andS. R. Skaggs,J. Mater. Sci. 20 (1985) 1060.CrossRefGoogle Scholar
  20. 20.
    H. Wada, M. J. Wang andT. Y. Tien,J. Amer. Ceram. Soc. 71 (1988) 837.CrossRefGoogle Scholar
  21. 21.
    E. T. Turkdogan andJ. V. Vinters,Inst. Min. Metall. Trans. C 85 (1976) 117.Google Scholar
  22. 22.
    P. L. Walker Jr, M. Shelf andR. A. Anderson, in “Chemistry and Physics of Carbon”, Vol. 4, edited by P. L. Walker Jr (Edward Arnold, London, 1968) p. 317.Google Scholar
  23. 23.
    E. T. Turkdogan andJ. V. Vinters,Carbon 7 (1969) 101.CrossRefGoogle Scholar
  24. 24.
    Idem., ibid. 10 (1972) 97.CrossRefGoogle Scholar
  25. 25.
    G. R. Belton,Met. Trans. 3 (1972) 1465.CrossRefGoogle Scholar
  26. 26.
    D. Pohl andE. Scheil,Giesserei 43 (1956) 833.Google Scholar
  27. 27.
    T. J. Whalen, S. M. Kaufman andM. Hamenik Jr,Trans ASM 55 (1962) 779.Google Scholar
  28. 28.
    G. A. Bootsma, W. F. Knippenberg andG. Verspipi,J. Crystal. Growth 11 (1971) 297.CrossRefGoogle Scholar
  29. 29.
    J. R. O'Connor andJ. Smittens (eds), “Silicon Carbide a High Temperature Semiconductor”, Proceedings of the Conference on Silicon Carbide, Boston, MA (Pergamon Press, Oxford, 1960) p. 25.Google Scholar
  30. 30.
    R. V. Coleman andG. W. Sears,Acta Metall. 5 (1957) 131.CrossRefGoogle Scholar
  31. 31.
    L. I. van Torne,J. Appl. Phys. 37 (1966) 1849.CrossRefGoogle Scholar
  32. 32.
    S. R. Nutt,J. Amer. Ceram. Soc. 71 (1988) 149.CrossRefGoogle Scholar
  33. 33.
    S. Amelinex, in “Direct Observation of Dislocation” (Academic Press, New York, 1964) p. 139.Google Scholar
  34. 34.
    P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley andM. J. Whelan, in “Electron Microscopy of Thin Crystals” (Krieger, Malabar, FL, 1977) p. 130.Google Scholar
  35. 35.
    J. D. Eshelby,J. Appl. Phys. 24 (1952) 176.CrossRefGoogle Scholar
  36. 36.
    J. J. Petrovic, J. V. Milewski, D. L. Rohr andF. D. Grac,J. Mater. Sci. 20 (1985) 1167.CrossRefGoogle Scholar
  37. 37.
    A. Jha andP. Grieveson,ibid. 25 (1990) 2299.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • A. Chrysanthou
    • 1
  • P. Grieveson
    • 1
  • A. Jha
    • 2
  1. 1.Department of MaterialsImperial College of Science and TechnologyLondonUK
  2. 2.Department of Materials TechnologyBrunel UniversityUxbridgeUK

Personalised recommendations