Advertisement

Journal of Materials Science

, Volume 26, Issue 13, pp 3433–3437 | Cite as

Crystallization kinetics of bulk amorphous Se80−xSbxTe20

  • R. M. Mehra
  • G. Kaur
  • P. C. Mathur
Papers

Abstract

Crystallization kinetics of the Se80−xSbxTe20 (0⩽x⩽9) alloys have been studied using differential scanning calorimetry. The activation energies for the glass transition and that for crystallization have been determined from the heating rate dependence of the glass transition temperature and the peak crystallization temperature. The results have been analysed using the modified Kissinger's and Matusita's equations for the non-isothermal crystallization of materials. The variation of glass transition temperature with composition suggests that a small amount of Sb (⩽ 4 at %) leads to an increase in the chain length of Se-Te, whereas further increase in Sb atomic per cent increases the number of Se-Te chains in the alloys.

Keywords

Polymer Crystallization Activation Energy Differential Scanning Calorimetry Heating Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Onozuka andO. Oda,J. Non-Cryst. Solids 103 (1988) 289.CrossRefGoogle Scholar
  2. 2.
    M. Lasocka,Mater. Sci. Engng 23 (1976) 173.CrossRefGoogle Scholar
  3. 3.
    H. E. Kissinger,J. Res. Nat. Bur. Stand. 57 (1956) 217.CrossRefGoogle Scholar
  4. 4.
    K. Matusita andS. Sakka,Phys. Chem. Glasses 20 (1979) 81.Google Scholar
  5. 5.
    D. R. MacFarlane, M. Matecki andM. Poulain,J. Non-Cryst. Solids 64 (1984) 351.CrossRefGoogle Scholar
  6. 6.
    K. Matusita andS. Sakka,ibid. 38-39 (1980) 741.CrossRefGoogle Scholar
  7. 7.
    Idem., Bull. Inst. Chem. Res. Kyoto Univ. 59 (1981) 159.Google Scholar
  8. 8.
    K. Matusita, T. Konatsu andR. Yokota,J. Mater. Sci. 19 (1984) 291.CrossRefGoogle Scholar
  9. 9.
    A. Morotto, S. Saiello andA. Buri,J. Non-Cryst. Solids 57 (1983) 473.CrossRefGoogle Scholar
  10. 10.
    K. Matusita andS. Sakka,Therm. Chim. Acta 33 (1979) 351.CrossRefGoogle Scholar
  11. 11.
    J. Colemenero andJ. M. Barandiaran,J. Non-Cryst. Solids 30 (1978) 263.CrossRefGoogle Scholar
  12. 12.
    P. Duhaj, D. Barancok andA. Ondrjka,ibid. 21 (1976) 411.CrossRefGoogle Scholar
  13. 13.
    R. F. Speyer andS. H. Risbud,Phys. Chem. Glasses 24 (1983) 26.Google Scholar
  14. 14.
    S. Mahadevan, A. Giridhar andA. K. Singh,J. Non-Cryst. Solids 88 (1986) 11.CrossRefGoogle Scholar
  15. 15.
    A. Hruby,Czech. J. Phys. B 22 (1972) 1187.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • R. M. Mehra
    • 1
  • G. Kaur
    • 1
  • P. C. Mathur
    • 1
  1. 1.Department of Electronic ScienceUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations