Journal of Materials Science

, Volume 26, Issue 18, pp 5107–5112 | Cite as

Chemical and structural characterization of SnS2 single crystals grown by low-temperature chemical vapour transport

  • T. Shibata
  • Y. Muranushi
  • T. Miura
  • T. Kishi


Chemical and structural characterization has been performed for thick (100–600 μm) and thin (10–100 μm) 2H/4H inter-polytype SnS2 crystals grown by low-temperature chemical vapour transport in the reverse temperature gradient geometry. X-ray diffraction shows that the 2H/4H-SnS2 phase transforms to single-crystal 2H-SnS2 in 6–12 months. The S/Sn ratio is 2.02±0.01 in thick crystals and 2.01±0.01 in thin crystals. Thermogravimetric/differential thermal analysis and the other characterization techniques show no difference between the two types of crystal. Extremely small quantities of carbon and oxygen and some chlorine were detected by secondary ion mass spectroscopy and/or X-ray photoelectron spectroscopy (XPS). These elements are concentrated at the surface. The XPS data show a chemical shift of tin and sulphur in the surface layer, which is probably caused by the adsorbed carbon and oxygen; however, it cannot be explained by the formation of the usual oxides of tin and sulphur.


Structural Characterization Characterization Technique Adsorbed Carbon SnS2 Reverse Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Shibata, T. Miura, T. Kishi and T. Nagai, J. Crystal Growth, 106 (1990) 593.CrossRefGoogle Scholar
  2. 2.
    F. A. S. Al-Alamy and A. A. Balchin, ibid. 38 (1977) 221.CrossRefGoogle Scholar
  3. 3.
    B. Palosz, W. Palosz and S. Gierlotaka, Bull. Mineral. 109 (1986) 143.Google Scholar
  4. 4.
    Idem, Acta Crystallogr. C41 (1985) 807.Google Scholar
  5. 5.
    T. Shibata, Y. Muranushi, T. Miura and T. Kishi, Hyomen Gijutsu 40 (1989) 1142.Google Scholar
  6. 6.
    F. J. Schmitte, in Landolt Bornstein, “Group III: Crystal and Solid State Physics, Semiconductors”, Vol. 17d, edited by K. H. Hellwege and O. Madelung (Springer-Verlag, Berlin, 1983) p. 207.Google Scholar
  7. 7.
    T. Shibata, Y. Muranushi, T. Miura and T. Kishi, J. Phys. Chem. Solids, 52 (1991) 551.CrossRefGoogle Scholar
  8. 8.
    G. Domingo, R. S. Itoga and C. R. Kannewurf, Phys. Rev. 143 (1965) 536.CrossRefGoogle Scholar
  9. 9.
    S. Hagstrom and S. E. Karlsson, Arkiv Fysik 26 (1964) 451.Google Scholar
  10. 10.
    W. E. Morgan and J. R. Van Wazer, J. Phys. Chem. 77 (1973) 96.CrossRefGoogle Scholar
  11. 11.
    P. A. Grutsch, M. V. Zeller and T. P. Fehlner, Inorg. Chem. 12 (1973) 1432.CrossRefGoogle Scholar
  12. 12.
    A. W. C. Lin, N. R. Armstrong and T. Kuwana, Anal. Chem. 49 (1977) 1228.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • T. Shibata
    • 1
  • Y. Muranushi
    • 1
  • T. Miura
    • 1
  • T. Kishi
    • 1
  1. 1.Department of Applied Chemistry, Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations