Journal of Materials Science

, Volume 26, Issue 18, pp 5075–5080 | Cite as

Effect of carbon monoxide partial pressure on the high-temperature decomposition of Nicalon fibre

  • G. S. Bibbo
  • P. M. Benson
  • C. G. Pantano


The high-temperature equilibrium partial pressures of the predominant gaseous species over Nicalon were determined thermochemically. It was calculated that the most prevalent gaseous species in equilibrium with Nicalon at 1300 °C is carbon monoxide. Subsequently, fibres of Nicalon (NLM 202) were heat treated at 1300 °C in various partial pressures of carbon monoxide gas and analysed via single filament strength testing, scanning electron microscopy, X-ray diffraction, and scanning Auger microscopy. The heat treatments in carbon monoxide had a significant effect on the strength retention and composition of the fibres (∼75% retained) compared to the treatments in argon where only 25% of the initial strength was retained. The Auger analysis revealed that the treatment in argon evolved carbon and oxygen from the fibre while in carbon monoxide atmospheres a carbon layer was deposited on the fibre surface. X-ray diffraction showed that grain growth had not occurred in any of the heat treatments. This study shows the important role of thermochemical reactions in the strength degradation of Nicalon, and its possible relationship to the formation of carbon surface/interface layers.


Carbon Monoxide Partial Pressure Auger Gaseous Species Strength Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Prewo and J. J. Brennan, J. Mater. Sci. 15 (1980) 463.CrossRefGoogle Scholar
  2. 2.
    R. F. Cooper and K. Chyung, ibid. 22 (1987) 3148.CrossRefGoogle Scholar
  3. 3.
    S. Yajima, K. Okamura, T. Katsuzana, Y. Hasegana and T. Shishido, Nature 279 (1979) 706.CrossRefGoogle Scholar
  4. 4.
    L. Porte and A. Sartre, J. Mater. Sci. 24 (1989) 271.CrossRefGoogle Scholar
  5. 5.
    C. Laffon, A. M. Flank, P. Lagarde, M. Laridjan, R. Nagege, P. Olry, J. Cotteret, J. Dixmier, J. L. Miquel, H. Hommel and A. P. Legrand, ibid. 24 (1989) 1503.CrossRefGoogle Scholar
  6. 6.
    Y. Sasaki, Y. Nishina, M. Sato and K. Okamura, ibid. 22 (1987) 443.CrossRefGoogle Scholar
  7. 7.
    B. Catoire, M. Sotton, G. Simon and A. R. Bunsell, Polymer 28 (1987) 751.CrossRefGoogle Scholar
  8. 8.
    T. S. Clark, M. Jaffe, J. Rabe and N. Langley, Ceram. Engng. Sci. Proc. 7 (1988) 901.CrossRefGoogle Scholar
  9. 9.
    T. S. Clark, R. M. Arons, J. B. Stamatoff and J. Rabe, ibid. 6 (1985) 576.CrossRefGoogle Scholar
  10. 10.
    T. Mah, N. L. Hecht, D. E. McCullum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt, J. Mater. Sci. 19 (1984) 1191.CrossRefGoogle Scholar
  11. 11.
    J. J. Clark, E. R. Prack, M. I. Haider and L. C. Sawyer, Ceram. Engng Sci. Proc. 8 (1987) 717.CrossRefGoogle Scholar
  12. 12.
    D. J. Pysher, K. C. Goretta, R. S. Hodder Jr and R. E. Tressler, J. Amer. Ceram. Soc. 72 (1989) 284.CrossRefGoogle Scholar
  13. 13.
    K. L. Luthra, ibid. 69 (1986) C231.CrossRefGoogle Scholar
  14. 14.
    S. M. Johnson, R. D. Brittain and R. H. Lamoreaux, “Degradation of SiC Fibres”, in “High Temperature Materials Chemistry IV”, edited by Z. A. Munir, D. Cubicciotti and H. Tagawa (The Electrochemical Society, Pennington, NJ, 1988) pp. 355–61.Google Scholar
  15. 15.
    S. M. Johnson, R. D. Brittain, R. H. Lamoreaux and D. J. Rowcliffe, J. Amer. Ceram. Soc. 71 (1988) C132.Google Scholar
  16. 16.
    J. Lipowitz, G. LeGrow, T. Lim and N. Langley, Ceram. Engng Sci. Proc. 9 (1988) 931.CrossRefGoogle Scholar
  17. 17.
    R. Bodet, private communication, The Pennsylvania State University (1990).Google Scholar
  18. 18.
    T. Ishikawa, H. Ishikana and H. Teranishi, “Strength and Structure of SiC Fiber After Exposure to High Temperature”, in “High Temperature Materials Chemistry IV”, edited by Z. A. Munir, D. Cubicciotti and H. Tagawa (The Electrochemical Society, Pennington, NJ, 1988) pp. 205–11.Google Scholar
  19. 19.
    A. G. Evans, J. Amer. Ceram. Soc. 73 (1990) 187.CrossRefGoogle Scholar
  20. 20.
    G. Eriksson, Chem. Scripta 8 (1975) 100.Google Scholar
  21. 21.
    “JANAF Thermochemical Tables”, 3rd Edn, NSRDS-BS 37 (1986).Google Scholar
  22. 22.
    I. Barin and O. Knacke, “Thermochemical Properties of Inorganic Substances” (Springer-Verlag, New York, 1973).Google Scholar
  23. 23.
    P. M. Benson, K. E. Spear and C. G. Pantano, “Thermochemical Analyses of Interface Reactions in Carbon-Fiber Reinforced Glass Matrix Composites, in “Ceramic Microstructures '86”, edited by J. A. Pask and A. G. Evans (Plenum Press, New York, 1987) pp. 415–25.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • G. S. Bibbo
    • 1
  • P. M. Benson
    • 1
  • C. G. Pantano
    • 1
  1. 1.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations