Advertisement

Journal of Materials Science

, Volume 26, Issue 18, pp 5047–5052 | Cite as

Hydrothermal stability of yttria- and ceria-doped tetragonal zirconia-alumina composites

  • Masanori Hirano
  • Hiroshi Inada
Papers

Abstract

Changes in the crystalline phase and microstructure resulting from hydrothermal ageing of Y-TZP, (Y,Ce)-TZP, Y-TZP-Al2O3 composites and (Y,Ce)-TZP-Al2O3 composites were investigated under hydrothermal conditions at 180 °C and 1 MPa. Although (Y,Ce)-TZP showed no tetragonal-to-monoclinic (t→m) phase transformation during low-temperature ageing in air as compared with 3Y-TZP, the tetragonal phase of (Y,Ce)-TZP easily transformed to monoclinic phase by ageing under hydrothermal condition. This t→m phase transformation invaded the inside of the body accompanied by microcracks. (Y,Ce)-TZP-Al2O3 composites were resistant to phase transformation during hydrothermal ageing.

Keywords

Polymer Microstructure Phase Transformation Yttria Crystalline Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. K. Gupta, F. F. Lange and J. H. Bechtold, J. Mater. Sci. 13 (1978) 1464.CrossRefGoogle Scholar
  2. 2.
    F. F. Lange, ibid. 17 (1982) 240.CrossRefGoogle Scholar
  3. 3.
    K. Kobayashi, H. Kuwajima and T. Masaki, Solid State Ionics (3–4) (1981) 489.CrossRefGoogle Scholar
  4. 4.
    T. Sato and M. Shimada, J. Amer. Ceram. Soc. 67 (1984) c-212.CrossRefGoogle Scholar
  5. 5.
    Idem, ibid. 68 (1985) 356.CrossRefGoogle Scholar
  6. 6.
    F. F. Lange, G. L. Dunlop and B. I. Davis, ibid. 69 (1986) 237.CrossRefGoogle Scholar
  7. 7.
    P. J. Whalen, F. Reidinger and R. F. Antrim, ibid. 72 (1989) 319.CrossRefGoogle Scholar
  8. 8.
    K. Tsukuma, Amer. Ceram. Soc. Bull. 65 (1986) 1386.Google Scholar
  9. 9.
    T. Sato, T. Fukushima, T. Endo and M. Shimada, in Proceedings of International Conference on the Science of Ceramics, vol. 14, pp. 843–48.Google Scholar
  10. 10.
    T. Sato, T. Endo and M. Shimada, J. Amer. Ceram. Soc. 72 (1989) 761.CrossRefGoogle Scholar
  11. 11.
    F. F. Lange, J. Mater. Sci. 17 (1982) 247.CrossRefGoogle Scholar
  12. 12.
    M. Hirano and H. Inada, J. Ceram. Soc. Jpn. 99 (1991) 124.CrossRefGoogle Scholar
  13. 13.
    R. C. Garvie and P. S. Nicholson, J. Amer. Ceram. Soc. 55 (1972) 303.CrossRefGoogle Scholar
  14. 14.
    K. Urabe, K. Ogata, H. Ikawa and S. Udagawa, in Abstracts of American Ceramic Society 39th Pacific Coast Regional Meeting (1986) p. 45.Google Scholar
  15. 15.
    M. Hirano, T. Matsuyama, H. Inada, K. Suzuki, H. Yoshida and M. Machida, J. Ceram. Soc. Jpn. 99 (1991) 395.CrossRefGoogle Scholar
  16. 16.
    K. Nakajima, K. Kobayashi and Y. Murata, in “Advances in Ceramics”, Vol. 12, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) pp. 399–407.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • Masanori Hirano
    • 1
  • Hiroshi Inada
    • 1
  1. 1.Noritake Co. LtdNagoya-shiJapan

Personalised recommendations