Journal of Materials Science

, Volume 26, Issue 18, pp 5013–5018 | Cite as

Sulphurization of coprecipitated carbonates for formation of CaLa2S4

  • Li Hsing Wang
  • Min Hsiung Hon
  • Wen Liang Huang
  • Whai Yuh Lin


Factors including BET surface area and La/Ca mole ratio of the coprecipitated carbonates, pH value of the solvent and decomposition atmosphere before sulphurization for fabrication of ultrafine CaLa2S4 powder were investigated. The CaLa2S4 powder was formed through decomposition of coprecipitated carbonates in vacuum and sulphurization with hydrogen sulphide at low temperature. The resultant powder was determined to be a pure CaLa2S4 without oxysulphide phase, as analysed by X-ray diffraction. It consisted of fine particles of size ∼1.6 μm and showed translucency after sintering at 1400 °C under an H2S atmosphere.


Hydrogen Polymer Atmosphere Sulphide Fine Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. J. Sauders, T. Y. Wong and R. L. Gentilman, Adv. Optical Mater. Proc. SPIE 505 (1984) 3.Google Scholar
  2. 2.
    D. L. Chess, C. A. Chess, J. A. Biggers and W. B. White, J. Amer. Ceram. Soc. 66 (1983) 18.CrossRefGoogle Scholar
  3. 3.
    R. V. Kumar and D. A. R. Kay, Met. Trans. 16B (1985) 287.CrossRefGoogle Scholar
  4. 4.
    R. S. Gordon and W. D. Kingery, J. Amer. Ceram. Soc. 50 (1967) 8.CrossRefGoogle Scholar
  5. 5.
    D. Beruto and A. W. Searcy, Nature 263 (1976) 221.CrossRefGoogle Scholar
  6. 6.
    D. Beruto and L. Bargo, J. Amer. Ceram. Soc. 66 (1983) 893.CrossRefGoogle Scholar
  7. 7.
    J. Ewing, D. Beruto and A. W. Searcy, ibid. 62 (1979) 580.CrossRefGoogle Scholar
  8. 8.
    G. Spinolo and U. A. Tamurini, “Microstructure-Kinetics Relationship in Thermal Decomposition of Alkali-Earth Carbonates”, in “High Tech Ceramics”, edited by P. Vincenzini (Elsevier Science, Amsterdam, 1987) pp. 367–74.Google Scholar
  9. 9.
    T. Toide, Bull. Tokyo Inst. Technol. 126 (1975) 35.Google Scholar
  10. 10.
    J. R. Henderson, M. Muramoto and E. Loh, J. Chem. Phys. 47 (1967) 3347.CrossRefGoogle Scholar
  11. 11.
    L. F. Hamilton and S. G. Simpson, “Quantitative Chemical Analysis” 12th Edn (Macmillan, New York, 1964) p. 321.Google Scholar
  12. 12.
    P. N. Kumta and S. H. Risbud, Mater. Sci. Engng. B2 (1989) 281.CrossRefGoogle Scholar
  13. 13.
    J. Takahashi and T. Ohtsuka, J. Amer. Ceram. Soc. 72 (1989) 426.CrossRefGoogle Scholar
  14. 14.
    Powder Diffraction File, Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Swarthmore, PA (1975) Card 22-645.Google Scholar
  15. 15.
    Idem., (1957) Card 8-464.Google Scholar
  16. 16.
    Idem., (1975) Card 27-263.Google Scholar
  17. 17.
    Idem., (1976) Card 29-338.Google Scholar
  18. 18.
    E. D. Weil, “Sulphur Compounds”, in “Encyclopedia of Chemical Technology”, Vol. 22, 3rd Edn (Wiley, New York, 1978) p. 115.Google Scholar
  19. 19.
    B. C. Gates, J. R. Katzer and G. C. A. Schuit, “Chemistry of Catalytic Processes” (McGraw-Hill, New York, 1979).Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • Li Hsing Wang
    • 1
  • Min Hsiung Hon
    • 1
  • Wen Liang Huang
    • 1
  • Whai Yuh Lin
    • 2
  1. 1.Department of Materials EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Materials Research and Development CentreChung Shan Institute of Science and TechnologyTaiwan

Personalised recommendations