Advertisement

Journal of Materials Science

, Volume 26, Issue 18, pp 4971–4976 | Cite as

Application of scanning tunnelling microscopy to the quality control of tungsten carbide (WC-Co) ball bearings

  • N. M. D. Brown
  • G. M. Taggart
  • Hong-Xing You
Papers

Abstract

Scanning tunnelling microscopy (STM) has been applied to the topographical study of tungsten carbide (with ∼6% Co) ball bearings in air. It is shown that, for this material, scanning tunnelling microscopy can provide not only general topographical information on the surface microtexture with a resolution of nearly 0.1 nm if required, but also quantitative information for the measurement of surface roughness. Thus, scanning tunnelling microscopy has utility as a quality control tool of particular relevance in the submicron range. The STM topographical results from specific tungsten carbide ball bearings are presented, and the limitations and applicability of the STM technique when used as a quality control tool are discussed.

Keywords

Polymer Microscopy Carbide Surface Roughness Quality Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Nunome, M. Tsnkamoto, T. Yatagai and H. Satito, Appl. Opt. 24 (1985) 3791.CrossRefGoogle Scholar
  2. 2.
    J. M. Bennett and J. H. Dany, ibid. 20 (1981) 1785.CrossRefGoogle Scholar
  3. 3.
    H. Kanai, M. Abe and K. Kido, J. Acoust. Soc. Jpn 17 (1986) 343.CrossRefGoogle Scholar
  4. 4.
    G. Binnig and H. Rohrer, IBM J. Res. Develop. 30 (1986) 355.Google Scholar
  5. 5.
    N. Garcia, A. M. Baro, R. Miranda, H. Rohrer, Ch. Gerber, R. Garcia Cantu and J. L. Pena, Metrologia 21 (1985) 135.CrossRefGoogle Scholar
  6. 6.
    D. R. Denley, J. Vac. Sci. Technol. A 8 (1990) 603.CrossRefGoogle Scholar
  7. 7.
    T. Yokohata, K. Kato and K. Ohmura, ibid. 8 (1990) 585.CrossRefGoogle Scholar
  8. 8.
    C. Schonenberger, S. F. Alvarado and C. Ortiz, J. Appl Phys. 66 (1989) 4258.CrossRefGoogle Scholar
  9. 9.
    K. Nakajima, S. Aoki, T. Koyano, E. Kita, A. Tasaki and S. Fujiwaka, Jpn. J. Appl. Phys. 28 (1989) L854.CrossRefGoogle Scholar
  10. 10.
    B. A. Sexton and G. F. Cotterill, J. Vac. Sci. Technol. A 7 (1989) 273.CrossRefGoogle Scholar
  11. 11.
    N. M. D. Brown and Hong-Xing You, Surf. Sci. 233 (1990) 317; 237 (1990) 273.CrossRefGoogle Scholar
  12. 12.
    H. Mueller, K. Wetzig, B. Schultrich, S. M. Pimenov, N. I. Chapliev, V. I. Konov and A. M. Prochorov, J. Mater. Sci. 24 (1989) 3328.CrossRefGoogle Scholar
  13. 13.
    ISO/R 468-1966, “Surface Roughness” (International Organization for Standardization, 1966).Google Scholar
  14. 14.
    E. Louis, P. Echenique and F. Flores, Physica Scripta 37 (1988) 359.CrossRefGoogle Scholar
  15. 15.
    P. K. Hansma and J. Tersoff, J. Appl. Phys. 61 (1987) R1.CrossRefGoogle Scholar
  16. 16.
    T. Tiedje, J. Varon, H. Deckman and J. Stokes, J. Vac. Sci. Technol. A 6 (1988) 372.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • N. M. D. Brown
    • 1
  • G. M. Taggart
    • 1
  • Hong-Xing You
    • 1
  1. 1.Surface Science Laboratory, Department of Applied Physical SciencesUniversity of UlsterColeraineIreland

Personalised recommendations