Advertisement

Journal of Materials Science

, Volume 26, Issue 18, pp 4961–4965 | Cite as

Crystallization of the metallic glass Fe78B13Si9

  • J. Y. Bang
  • R. Y. Lee
Papers

Abstract

The microstructures and kinetics with heating for an amorphous Fe78B13Si9 alloy were studied by X-ray diffraction, transmission electron microscopy, differential thermal analysis and differential scanning calorimetry. The first crystallization takes place by the simultaneous formation of α-(Fe,Si) and Fe3B having the shapes of dendrite and spherulite, respectively. Metastable Fe3B then transformed into a stable phase of Fe2B at a higher temperature. The activation energy for crystallization and the Avrami exponent were determined. It was found that crystallization behaviour in Fe78B13Si9 is controlled by nucleation rather than growth.

Keywords

Polymer Microstructure Crystallization Transmission Electron Microscopy Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Nakajima, I. Nagami and H. Ino, J. Mater. Sci. Lett. 5 (1986) 60.CrossRefGoogle Scholar
  2. 2.
    V. R. V. Ramanan and G. E. Fish, J. Appl. Phys. 53 (1982) 2273.CrossRefGoogle Scholar
  3. 3.
    A. Quivy, J. Rzepski, J. Chevalier and Y. Calvayrac, in Proceeding of the 5th International Conference on Rapidly Quenched Metals, Amsterdam (1985), edited by S. Steeb and H. Warlimont, p. 15.Google Scholar
  4. 4.
    S. Surinach, M. D. Baro and N. Clavaguera, ibid. p. 323.Google Scholar
  5. 5.
    A. Zaluska and H. Mataja, J. Mater. Sci. 18 (1983) 2163.CrossRefGoogle Scholar
  6. 6.
    K. Hoselitz, Phys. Status Solidi a 53 (1979) K23.CrossRefGoogle Scholar
  7. 7.
    A. Inoue, T. Masumoto, M. Kikuchi and T. Minemura, J. Jpn Inst. Met. 42 (1978) 294.CrossRefGoogle Scholar
  8. 8.
    A. Datta, N. J. de Cristofaro and L. A. Davis, in Proceeding of the 4th International Conference on Rapidly Quenched Metals, Japan (1981) edited by J. Masumoto and X. Suzuki, p. 1007.Google Scholar
  9. 9.
    C. F. Chang and J. Marti, J. Mater. Sci. 18 (1983) 2297.CrossRefGoogle Scholar
  10. 10.
    C. F. Swartz, R. Kossowsky, J. J. Haugh and R. F. Krause, J. Appl. Phys. 52 (1981) 3324.CrossRefGoogle Scholar
  11. 11.
    J. L. Walter, S. F. Bartram and R. R. Russel, Met. Trans. 9A (1978) 803.CrossRefGoogle Scholar
  12. 12.
    J. A. Augis and J. E. Bennet, J. Thermal Anal. 13 (1978) 283.CrossRefGoogle Scholar
  13. 13.
    M. Avrami, J. Chem. Phys. 7 (1939) 1103.CrossRefGoogle Scholar
  14. 14.
    T. Ozawa, Polymer 11 (1970) 150.Google Scholar
  15. 15.
    U. Herold and U. Koster, in “Rapidly Quenched Metals” Vol. 1, edited by B. Cantor (Metals Society, London, 1979) p. 281.Google Scholar
  16. 16.
    U. Koster, U. Herold, H. G. Hillenbrand and J. Denis, J. Mater. Sci. Lett. 15 (1980) 2125.CrossRefGoogle Scholar
  17. 17.
    M. Hansen, “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958).CrossRefGoogle Scholar
  18. 18.
    S. Ranganathan and M. Von Heimendahl, J. Mater. Sci. 16 (1981) 2401.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • J. Y. Bang
    • 1
  • R. Y. Lee
    • 1
  1. 1.Department of Materials Science and EngineeringDankook UniversityCheonahnKorea

Personalised recommendations