Journal of Materials Science

, Volume 26, Issue 18, pp 4937–4944 | Cite as

Hydrous oxides of titanium: cation exchange properties and kinetics of exchange

  • N. Yacoub
  • J. Ragai
  • S. A. Selim


The ion exchange properties of hydrous titania gels of different particle sizes, precipitated from titanous chloride through the agency of ammonium carbonate and hydroxide have been studied. Such studies were carried out under acidic and alkaline conditions with respect to Cu2+, Ni2+, Co2+ and Cr3+ ions.

In the case of gels precipitated by ammonium carbonate, oxygen gas was used as the oxidizing agent whereas with ammonium hydroxide as precipitant, oxidation was performed with hydrogen peroxide.

Ion exchange capacities were determined by visible spectrophotometry. Increasing the pH of preparation lead to an increase in exchange capacities of the hydroxide precipitated gels that are characterized to be mesoporous. Such an increase is not observed in the case of carbonate precipitated microporous gels. It is shown that in the latter case the NH 4 + ions generated by the initial interaction of (NH4)2CO3 with the acidic titanous chloride lead to the formation of titania exchangers that are predominantly in the ammonium form. The textural characteristics of the exchanger resulting from different conditions of preparation is a significant contributing parameter to the resulting data.

Ageing of the microporous titania samples markedly reduces the exchanger capacity of the smaller Ni2+ ions but increases that of the bulkier Cr3+ as a result of the presence of some wide pores that appear upon agglomeration. The presence of Cr3+ ions in the hydroxo form in solution seems to inhibit its exchange with the appropriate surface species.

Studies on the kinetics of exchange with respect to the Ni2+ ions seem to indicate that a particle diffusion mechanism is partly or completely responsible for the rate of exchange.


Ammonium Hydroxide Exchange Property Titania Sample Ammonium Carbonate Hydrous Titania 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. E. Boyd and B. A. Soldano, J. Amer. Chem. Soc. 75 (1953) 6091.CrossRefGoogle Scholar
  2. 2.
    J. P. Bonsack, J. Colloid Interface Sci. 44 (1973) 430.CrossRefGoogle Scholar
  3. 3.
    Y. Inove and M. Tauji, J. Nucl. Sci. Technol. 13 (1976) 85.CrossRefGoogle Scholar
  4. 4.
    A. M. Andrianov, V. P. Koryukova, V. E. Roladyan, L. K. Sakhno, L. V. Smirnova and E. V. Shabanov, Zh. Prikl. Khim. 51 (1978) 1892.Google Scholar
  5. 5.
    T. Sazaki, Y. Komatsu and Y. Fujiki, Sep. Sci. Technol. 18 (1983) 49.CrossRefGoogle Scholar
  6. 6.
    M. Tsuji, M. Abe and M. Orimo, Bull. Chem. Soc. Jpn 58 (1985) 97.CrossRefGoogle Scholar
  7. 7.
    Y. Komatsu, Y. Fujiki and T. Sasaki, ibid. 59 (1986) 49.CrossRefGoogle Scholar
  8. 8.
    J. Ragai and S. I. Selim, J. Colloid Interface Sci. 115 (1986) 139.CrossRefGoogle Scholar
  9. 9.
    T. D. Semenouskaya, M. Deak and K. V. Chamutov, Zh. Fiz. Khim. 49 (1975) 462.Google Scholar
  10. 10.
    M. Abe, M. Tsuji, S. P. Qureshi and H. Uchikoshi, Chromatographia 13 (1980) 626.CrossRefGoogle Scholar
  11. 11.
    H. Kita, N. Henmi, K. Shimazu and K. Tanabe, J. C. S., Faraday Trans. I. 77 (1981) 2451.CrossRefGoogle Scholar
  12. 12.
    H. P. Boehm, Adv. Catal. 16 (1966) 179.Google Scholar
  13. 13.
    J. Ragai, J. Chem. Tech. Biotechnol. 44 (1989) 237.CrossRefGoogle Scholar
  14. 14.
    J. Ragai, K. S. W. Sing, R. Mikhail, ibid. 30 (1980) 1.CrossRefGoogle Scholar
  15. 15.
    K. Nakamoto, in “Infrared and Raman Spectra of Inorganic and Coordination Compounds” (John Wiley, New York, 1978) pp. 288.Google Scholar
  16. 16.
    J. Ragai, Nature 325 (1987) 703.CrossRefGoogle Scholar
  17. 17.
    M. L. Hair, J. Phys. Chem. 74 (1970) 1290.CrossRefGoogle Scholar
  18. 18.
    M. Elsaidi, MSc, Thesis, American University in Cairo, Egypt (1989).Google Scholar
  19. 19.
    C. F. Boes Jr and R. E. Meswar, (eds) “The Hydrolysis of Cations” (John Wiley, New York, 1976) pp. 218.Google Scholar
  20. 20.
    J. Ragai and K. S. W. Sing, J. Colloid Interface Sci. 101 (1984) 369.CrossRefGoogle Scholar
  21. 21.
    J. E. Huheey, “Inorganic Chemistry Principals of Structure and Reactivity” (Harper and Row, New York, 1983).Google Scholar
  22. 22.
    V. V. Strelko, S. A. Khainakov, A. P. Kuasheuko, V. N. Belyakov and A. I. Bortun, Zh. Prikl. Khim (Leningrad) 61 (1988) 2124.Google Scholar
  23. 23.
    S. A. Selim and H. A. Hassan, Thermochimica Acta 45 (1981) 349.CrossRefGoogle Scholar
  24. 24.
    N. N. Greenwood and A. Earnshaw, “Chemistry of the Elements” (Pergamon Press, Oxford, 1984).Google Scholar
  25. 25.
    Y. Inove and M. Yamazaki, Bull. Chem. Soc. Jpn 53 (1980) 811.CrossRefGoogle Scholar
  26. 26.
    G. E. Boyd, A. W. Adamson and L. S. Myers, J. Amer. Chem. Soc. 69 (1947) 2836.CrossRefGoogle Scholar
  27. 27.
    D. Reichenberg, ibid. 75 (1953) 589.CrossRefGoogle Scholar
  28. 28.
    S. T. Gregg and K. S. W. Sing, “Adsorption, Surface Area and Porosity” (Academic, London, 1967) pp. 201.Google Scholar
  29. 29.
    G. H. Nancollus and R. Paterson, J. Inorg. Nucl. Chem. 22 (1961) 259.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • N. Yacoub
    • 1
  • J. Ragai
    • 1
  • S. A. Selim
    • 2
  1. 1.Department of ScienceThe American University in CairoCairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceAin-Shams UniversityCairoEgypt

Personalised recommendations