Advertisement

Journal of Materials Science

, Volume 26, Issue 18, pp 4910–4916 | Cite as

Influence of air and material damping on dynamic elastic modulus measurement

  • Chin-Chen Chiu
Papers

Abstract

In this paper, air and material damping effects on the dynamic elastic modulus measurement of a flexural vibrating beam with free ends are evaluated, according to the Bernoulli-Euler beam equation. The theoretical analysis indicates that the measured elastic modulus is not substantially influenced by material damping. However, the measured modulus decreases with an increasing extent of air damping. In addition to theoretical analysis, experimental results for glass and alumina specimens also show that air damping decreases the measured modulus.

Keywords

Polymer Alumina Elastic Modulus Theoretical Analysis Measured Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. L. Dole, D. Hunter, J. F. W. Calderwood and D. J. Bary, J. Amer. Ceram. Soc. 61 (1978) 486.CrossRefGoogle Scholar
  2. 2.
    K. Matsushita, S. Kuratani, T. Okamoto and D. M. Shimada, J. Mater. Sci. Lett. 3 (1984) 345.CrossRefGoogle Scholar
  3. 3.
    C. Y. Lee, M. Pfeifer, B. S. Thompson and M. V. Gandhi, J. Compos. Mater. 23 (1989) 819.CrossRefGoogle Scholar
  4. 4.
    A. B. Schutz and S. W. Tasi, ibid. 2 (1968) 368.CrossRefGoogle Scholar
  5. 5.
    H. M. Chou and E. D. Case, Mater. Sci. Engng 100 (1988) 7.CrossRefGoogle Scholar
  6. 6.
    E. Schreiber, O. L. Anderson and N. Soga, “Elastic Constants and Their Measuremen” (McGraw-Hill, New York, 1974) p. 82.Google Scholar
  7. 7.
    “Standard Test Method for Young's Modulus, Shear Modulus, and Poisson's Ratio for Glass and Glass-Ceramics by Resonance”, C623-71, Annual Book of ASTM Standards (Reapproved 1981).Google Scholar
  8. 8.
    C. W. D. Silva, AIAA J. 14 (1976) 676.CrossRefGoogle Scholar
  9. 9.
    M. Paz, “Structural Dynamics” (Van Nostrand Reinhold, New York, 1985) p. 422.Google Scholar
  10. 10.
    A. D. Nashif, D. I. G. Jones and J. P. Henderson, “Vibration Damping” (Wiley, New York, 1985) p. 161.Google Scholar
  11. 11.
    I. S. Sadek, S. Adali, J. M. Sloss and J. C. Bruch, J. Sound Vibr. 117 (1987) 207.CrossRefGoogle Scholar
  12. 12.
    A. W. Leissa, ibid. 134 (1989) 435.CrossRefGoogle Scholar
  13. 13.
    W. E. Baker, W. E. Woolam and D. Young, Int. J. Mech. Sci. 9 (1967) 743.CrossRefGoogle Scholar
  14. 14.
    P. M. Moretti and R. L. Lowery, J. Press. Vessel Technol., Trans. ASME 98 (1976) 190.CrossRefGoogle Scholar
  15. 15.
    R. D. Blevins, “Flow-Induced Vibration” (Van Nostrand Reinhold, New York, 1977) p. 120.Google Scholar
  16. 16.
    S. S. Chen, J. Eng. Ind., Trans. ASME 97 (1975) 1212.CrossRefGoogle Scholar
  17. 17.
    M. P. Paidoussis, S. Suss and M. Pustejovsky, J. Sound Vibr. 55 (1977) 443.CrossRefGoogle Scholar
  18. 18.
    V. J. Modi and D. T. Poon, J. Mech. Des., Trans. ASME 100 (1978) 337.Google Scholar
  19. 19.
    S. S. Chen, M. W. Wambsganss and J. A. Jemdrzejczyk, J. Appl. Mech., Trans. ASME 43 (1976) 325.CrossRefGoogle Scholar
  20. 20.
    J. B. Wachtman and W. E. Tefft, Rev. Sci. Instr. 29 (1958) 517.CrossRefGoogle Scholar
  21. 21.
    R. Resnick and D. Halliday, “Physics” (Wiley, New York, 1977) p. 499.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • Chin-Chen Chiu
    • 1
  1. 1.Department of Metallurgy, Mechanics, and MaterialsMichigan State UniversityEast LansingUSA

Personalised recommendations